#include #include #include #include #include #include #include "private.h" #define _MIN(x, y) (x < y) ? x : y /* Lighting will not be calculated if the attenuation * multiplier ends up less than this value */ #define ATTENUATION_THRESHOLD 0.01f static GLfloat SCENE_AMBIENT [] = {0.2f, 0.2f, 0.2f, 1.0f}; static GLboolean VIEWER_IN_EYE_COORDINATES = GL_TRUE; static GLenum COLOR_CONTROL = GL_SINGLE_COLOR; static GLboolean TWO_SIDED_LIGHTING = GL_FALSE; static GLenum COLOR_MATERIAL_MODE = GL_AMBIENT_AND_DIFFUSE; static LightSource LIGHTS[MAX_LIGHTS]; static Material MATERIAL; void _glInitLights() { static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f}; static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f}; static GLfloat PARTIAL [] = {0.2f, 0.2f, 0.2f, 1.0f}; static GLfloat MOSTLY [] = {0.8f, 0.8f, 0.8f, 1.0f}; memcpy(MATERIAL.ambient, PARTIAL, sizeof(GLfloat) * 4); memcpy(MATERIAL.diffuse, MOSTLY, sizeof(GLfloat) * 4); memcpy(MATERIAL.specular, ZERO, sizeof(GLfloat) * 4); memcpy(MATERIAL.emissive, ZERO, sizeof(GLfloat) * 4); MATERIAL.exponent = 0.0f; GLubyte i; for(i = 0; i < MAX_LIGHTS; ++i) { memcpy(LIGHTS[i].ambient, ZERO, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].diffuse, ONE, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].specular, ONE, sizeof(GLfloat) * 4); if(i > 0) { memcpy(LIGHTS[i].diffuse, ZERO, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].specular, ZERO, sizeof(GLfloat) * 4); } LIGHTS[i].position[0] = LIGHTS[i].position[1] = LIGHTS[i].position[3] = 0.0f; LIGHTS[i].position[2] = 1.0f; LIGHTS[i].spot_direction[0] = LIGHTS[i].spot_direction[1] = 0.0f; LIGHTS[i].spot_direction[2] = -1.0f; LIGHTS[i].spot_exponent = 0.0f; LIGHTS[i].spot_cutoff = 180.0f; LIGHTS[i].constant_attenuation = 1.0f; LIGHTS[i].linear_attenuation = 0.0f; LIGHTS[i].quadratic_attenuation = 0.0f; } } void APIENTRY glLightModelf(GLenum pname, const GLfloat param) { glLightModelfv(pname, ¶m); } void APIENTRY glLightModeli(GLenum pname, const GLint param) { glLightModeliv(pname, ¶m); } void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) { switch(pname) { case GL_LIGHT_MODEL_AMBIENT: memcpy(SCENE_AMBIENT, params, sizeof(GLfloat) * 4); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE; break; case GL_LIGHT_MODEL_TWO_SIDE: /* Not implemented */ default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightModeliv(GLenum pname, const GLint* params) { switch(pname) { case GL_LIGHT_MODEL_COLOR_CONTROL: COLOR_CONTROL = *params; break; case GL_LIGHT_MODEL_LOCAL_VIEWER: VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE; break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) { GLubyte idx = light & 0xF; if(idx >= MAX_LIGHTS) { return; } switch(pname) { case GL_AMBIENT: memcpy(LIGHTS[idx].ambient, params, sizeof(GLfloat) * 4); break; case GL_DIFFUSE: memcpy(LIGHTS[idx].diffuse, params, sizeof(GLfloat) * 4); break; case GL_SPECULAR: memcpy(LIGHTS[idx].specular, params, sizeof(GLfloat) * 4); break; case GL_POSITION: { _glMatrixLoadModelView(); memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4); if(params[3] == 0.0f) { //FIXME: Do we need to rotate directional lights? } else { mat_trans_single4( LIGHTS[idx].position[0], LIGHTS[idx].position[1], LIGHTS[idx].position[2], LIGHTS[idx].position[3] ); } } break; case GL_SPOT_DIRECTION: { LIGHTS[idx].spot_direction[0] = params[0]; LIGHTS[idx].spot_direction[1] = params[1]; LIGHTS[idx].spot_direction[2] = params[2]; } break; case GL_CONSTANT_ATTENUATION: case GL_LINEAR_ATTENUATION: case GL_QUADRATIC_ATTENUATION: case GL_SPOT_CUTOFF: case GL_SPOT_EXPONENT: glLightf(light, pname, *params); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) { GLubyte idx = light & 0xF; if(idx >= MAX_LIGHTS) { return; } switch(pname) { case GL_CONSTANT_ATTENUATION: LIGHTS[idx].constant_attenuation = param; break; case GL_LINEAR_ATTENUATION: LIGHTS[idx].linear_attenuation = param; break; case GL_QUADRATIC_ATTENUATION: LIGHTS[idx].quadratic_attenuation = param; break; case GL_SPOT_EXPONENT: LIGHTS[idx].spot_exponent = param; break; case GL_SPOT_CUTOFF: LIGHTS[idx].spot_cutoff = param; break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glMaterialf(GLenum face, GLenum pname, const GLfloat param) { if(face == GL_BACK || pname != GL_SHININESS) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } MATERIAL.exponent = _MIN(param, 128); /* 128 is the max according to the GL spec */ } void APIENTRY glMateriali(GLenum face, GLenum pname, const GLint param) { glMaterialf(face, pname, param); } void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) { if(pname == GL_SHININESS) { glMaterialf(face, pname, *params); return; } if(face == GL_BACK) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } switch(pname) { case GL_AMBIENT: memcpy(MATERIAL.ambient, params, sizeof(GLfloat) * 4); break; case GL_DIFFUSE: memcpy(MATERIAL.diffuse, params, sizeof(GLfloat) * 4); break; case GL_SPECULAR: memcpy(MATERIAL.specular, params, sizeof(GLfloat) * 4); break; case GL_EMISSION: memcpy(MATERIAL.emissive, params, sizeof(GLfloat) * 4); break; case GL_AMBIENT_AND_DIFFUSE: { glMaterialfv(face, GL_AMBIENT, params); glMaterialfv(face, GL_DIFFUSE, params); } break; case GL_COLOR_INDEXES: default: { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } } void APIENTRY glColorMaterial(GLenum face, GLenum mode) { if(face != GL_FRONT_AND_BACK) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } GLint validModes[] = {GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE, GL_EMISSION, GL_SPECULAR, 0}; if(_glCheckValidEnum(mode, validModes, __func__) != 0) { return; } COLOR_MATERIAL_MODE = mode; } GL_FORCE_INLINE GLboolean isDiffuseColorMaterial() { return (COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE); } GL_FORCE_INLINE GLboolean isAmbientColorMaterial() { return (COLOR_MATERIAL_MODE == GL_AMBIENT || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE); } GL_FORCE_INLINE GLboolean isSpecularColorMaterial() { return (COLOR_MATERIAL_MODE == GL_SPECULAR); } GL_FORCE_INLINE void initVec3(struct vec3f* v, const GLfloat* src) { memcpy(v, src, sizeof(GLfloat) * 3); } /* * Implementation from here (MIT): * https://github.com/appleseedhq/appleseed/blob/master/src/appleseed/foundation/math/fastmath.h */ GL_FORCE_INLINE float faster_pow2(const float p) { // Underflow of exponential is common practice in numerical routines, so handle it here. const float clipp = p < -126.0f ? -126.0f : p; const union { uint32_t i; float f; } v = { (uint32_t) ((1 << 23) * (clipp + 126.94269504f)) }; return v.f; } GL_FORCE_INLINE float faster_log2(const float x) { assert(x >= 0.0f); const union { float f; uint32_t i; } vx = { x }; const float y = (float) (vx.i) * 1.1920928955078125e-7f; return y - 126.94269504f; } GL_FORCE_INLINE float faster_pow(const float x, const float p) { return faster_pow2(p * faster_log2(x)); } GL_FORCE_INLINE float vec3_dot_limited( const float* x1, const float* y1, const float* z1, const float* x2, const float* y2, const float* z2) { float ret; vec3f_dot(*x1, *y1, *z1, *x2, *y2, *z2, ret); return (ret < 0) ? 0 : ret; } GL_FORCE_INLINE void _glLightVertexDirectional( uint8_t* final, int8_t lid, float LdotN, float NdotH, const float* ambient, const float* diffuse, const float* specular) { float F; uint8_t FO; float FI = (LdotN != 0.0f); FI = (MATERIAL.exponent) ? faster_pow(FI * NdotH, MATERIAL.exponent) : 1.0f; #define _PROCESS_COMPONENT(T, X) \ F = (ambient[X] * LIGHTS[lid].ambient[X]); \ F += (LdotN * diffuse[X] * LIGHTS[lid].diffuse[X]); \ F += FI * specular[X] * LIGHTS[lid].specular[X]; \ FO = (uint8_t) (_MIN(F * 255.0f, 255.0f)); \ final[T] += _MIN(FO, 255 - final[T]); _PROCESS_COMPONENT(R8IDX, 0); _PROCESS_COMPONENT(G8IDX, 1); _PROCESS_COMPONENT(B8IDX, 2); #undef _PROCESS_COMPONENT } GL_FORCE_INLINE void _glLightVertexPoint( uint8_t* final, int8_t lid, float LdotN, float NdotH, float att, const float* ambient, const float* diffuse, const float* specular) { float F; uint8_t FO; float FI = (LdotN != 0.0f); FI = (MATERIAL.exponent) ? faster_pow(FI * NdotH, MATERIAL.exponent) : 1.0f; #define _PROCESS_COMPONENT(T, X) \ F = (ambient[X] * LIGHTS[lid].ambient[X]); \ F += (LdotN * diffuse[X] * LIGHTS[lid].diffuse[X]); \ F += FI * specular[X] * LIGHTS[lid].specular[X]; \ FO = (uint8_t) (_MIN(F * att * 255.0f, 255.0f)); \ \ final[T] += _MIN(FO, 255 - final[T]); \ _PROCESS_COMPONENT(R8IDX, 0); _PROCESS_COMPONENT(G8IDX, 1); _PROCESS_COMPONENT(B8IDX, 2); #undef _PROCESS_COMPONENT } GL_FORCE_INLINE float MATH_fsrra(float x) { __asm__ volatile ("fsrra %[one_div_sqrt]\n" : [one_div_sqrt] "+f" (x) // outputs, "+" means r/w : // no inputs : // no clobbers ); return x; } GL_FORCE_INLINE void bgra_to_float(const uint8_t* input, GLfloat* output) { const static float scale = 1.0f / 255.0f; output[0] = ((float) input[R8IDX]) * scale; output[1] = ((float) input[G8IDX]) * scale; output[2] = ((float) input[B8IDX]) * scale; output[3] = ((float) input[A8IDX]) * scale; } void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t count) { int8_t i; int32_t j; Vertex* vertex = vertices; const EyeSpaceData* data = es; float base; /* This is the original vertex colour, before we replace it. It's * used for colour material */ float vdiffuse[4]; unsigned char isCM = _glIsColorMaterialEnabled(); /* Update pointers as necessary depending on color material */ GLfloat* ambient = (isCM && isAmbientColorMaterial()) ? vdiffuse : MATERIAL.ambient; GLfloat* diffuse = (isCM && isDiffuseColorMaterial()) ? vdiffuse : MATERIAL.diffuse; GLfloat* specular = (isCM && isSpecularColorMaterial()) ? vdiffuse : MATERIAL.specular; for(j = 0; j < count; ++j, ++vertex, ++data) { /* Unpack the colour for use in glColorMaterial */ if(isCM) { bgra_to_float(vertex->bgra, vdiffuse); } /* Initial, non-light related values */ base = (SCENE_AMBIENT[0] * ambient[0]) + MATERIAL.emissive[0]; vertex->bgra[R8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f)); base = (SCENE_AMBIENT[1] * ambient[1]) + MATERIAL.emissive[1]; vertex->bgra[G8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f)); base = (SCENE_AMBIENT[2] * ambient[2]) + MATERIAL.emissive[2]; vertex->bgra[B8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f)); vertex->bgra[A8IDX] = (uint8_t)(_MIN(MATERIAL.diffuse[3] * 255.0f, 255.0f)); /* Direction to vertex in eye space */ float Vx = -data->xyz[0]; float Vy = -data->xyz[1]; float Vz = -data->xyz[2]; vec3f_normalize(Vx, Vy, Vz); const float Nx = data->n[0]; const float Ny = data->n[1]; const float Nz = data->n[2]; for(i = 0; i < MAX_LIGHTS; ++i) { if(!_glIsLightEnabled(i)) continue; if(LIGHTS[i].position[3] == 0.0f) { float Lx = LIGHTS[i].position[0] - data->xyz[0]; float Ly = LIGHTS[i].position[1] - data->xyz[1]; float Lz = LIGHTS[i].position[2] - data->xyz[2]; float Hx = (Lx + 0); float Hy = (Ly + 0); float Hz = (Lz + 1); vec3f_normalize(Lx, Ly, Lz); vec3f_normalize(Hx, Hy, Hz); const float LdotN = vec3_dot_limited( &Nx, &Ny, &Nz, &Lx, &Ly, &Lz ); const float NdotH = vec3_dot_limited( &Nx, &Ny, &Nz, &Hx, &Hy, &Hz ); _glLightVertexDirectional( vertex->bgra, i, LdotN, NdotH, ambient, diffuse, specular ); } else { float Lx = LIGHTS[i].position[0] - data->xyz[0]; float Ly = LIGHTS[i].position[1] - data->xyz[1]; float Lz = LIGHTS[i].position[2] - data->xyz[2]; float D; vec3f_length(Lx, Ly, Lz, D); float att = ( LIGHTS[i].constant_attenuation + ( LIGHTS[i].linear_attenuation * D ) + (LIGHTS[i].quadratic_attenuation * D * D) ); att = MATH_fsrra(att * att); if(att >= ATTENUATION_THRESHOLD) { float Hx = (Lx + Vx); float Hy = (Ly + Vy); float Hz = (Lz + Vz); vec3f_normalize(Lx, Ly, Lz); vec3f_normalize(Hx, Hy, Hz); const float LdotN = vec3_dot_limited( &Nx, &Ny, &Nz, &Lx, &Ly, &Lz ); const float NdotH = vec3_dot_limited( &Nx, &Ny, &Nz, &Hx, &Hy, &Hz ); _glLightVertexPoint( vertex->bgra, i, LdotN, NdotH, att, ambient, diffuse, specular ); } } } } } #undef LIGHT_COMPONENT