#include #include #include #include #include "../include/gl.h" #include "../include/glext.h" #include "private.h" #include "profiler.h" typedef struct { const void* ptr; GLenum type; GLsizei stride; GLint size; } AttribPointer; static AttribPointer VERTEX_POINTER; static AttribPointer UV_POINTER; static AttribPointer ST_POINTER; static AttribPointer NORMAL_POINTER; static AttribPointer DIFFUSE_POINTER; #define VERTEX_ENABLED_FLAG (1 << 0) #define UV_ENABLED_FLAG (1 << 1) #define ST_ENABLED_FLAG (1 << 2) #define DIFFUSE_ENABLED_FLAG (1 << 3) #define NORMAL_ENABLED_FLAG (1 << 4) static GLuint ENABLED_VERTEX_ATTRIBUTES = 0; static GLubyte ACTIVE_CLIENT_TEXTURE = 0; void initAttributePointers() { TRACE(); VERTEX_POINTER.ptr = NULL; VERTEX_POINTER.stride = 0; VERTEX_POINTER.type = GL_FLOAT; VERTEX_POINTER.size = 4; DIFFUSE_POINTER.ptr = NULL; DIFFUSE_POINTER.stride = 0; DIFFUSE_POINTER.type = GL_FLOAT; DIFFUSE_POINTER.size = 4; UV_POINTER.ptr = NULL; UV_POINTER.stride = 0; UV_POINTER.type = GL_FLOAT; UV_POINTER.size = 4; ST_POINTER.ptr = NULL; ST_POINTER.stride = 0; ST_POINTER.type = GL_FLOAT; ST_POINTER.size = 4; NORMAL_POINTER.ptr = NULL; NORMAL_POINTER.stride = 0; NORMAL_POINTER.type = GL_FLOAT; NORMAL_POINTER.size = 3; } static inline GLuint byte_size(GLenum type) { switch(type) { case GL_BYTE: return sizeof(GLbyte); case GL_UNSIGNED_BYTE: return sizeof(GLubyte); case GL_SHORT: return sizeof(GLshort); case GL_UNSIGNED_SHORT: return sizeof(GLushort); case GL_INT: return sizeof(GLint); case GL_UNSIGNED_INT: return sizeof(GLuint); case GL_DOUBLE: return sizeof(GLdouble); case GL_FLOAT: default: return sizeof(GLfloat); } } typedef void (*FloatParseFunc)(GLfloat* out, const GLubyte* in); typedef void (*ByteParseFunc)(GLubyte* out, const GLubyte* in); typedef void (*PolyBuildFunc)(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i); static inline void _parseVec3FromShort3(GLfloat* out, const GLubyte* in) { GLshort* ptr = (GLshort*) in; out[0] = (GLfloat) ptr[0]; out[1] = (GLfloat) ptr[1]; out[2] = (GLfloat) ptr[2]; } static inline void _parseVec3FromInt3(GLfloat* out, const GLubyte* in) { GLint* ptr = (GLint*) in; out[0] = (GLfloat) ptr[0]; out[1] = (GLfloat) ptr[1]; out[2] = (GLfloat) ptr[2]; } static inline void _parseVec3FromFloat3(GLfloat* out, const GLubyte* in) { GLfloat* ptr = (GLfloat*) in; out[0] = ptr[0]; out[1] = ptr[1]; out[2] = ptr[2]; } static inline void _parseVec2FromFloat2(GLfloat* out, const GLubyte* in) { GLfloat* ptr = (GLfloat*) in; out[0] = ptr[0]; out[1] = ptr[1]; } static inline void _parseVec3FromFloat2(GLfloat* out, const GLubyte* in) { GLfloat* ptr = (GLfloat*) in; out[0] = ptr[0]; out[1] = ptr[1]; out[2] = 0.0f; } static inline void _parseVec4FromFloat3(GLfloat* out, const GLubyte* in) { GLfloat* ptr = (GLfloat*) in; out[0] = ptr[0]; out[1] = ptr[1]; out[2] = ptr[2]; out[3] = 1.0; } static inline void _parseVec4FromFloat4(GLfloat* out, const GLubyte* in) { GLfloat* ptr = (GLfloat*) in; out[0] = ptr[0]; out[1] = ptr[1]; out[2] = ptr[2]; out[3] = ptr[3]; } static inline void _parseColourFromUByte4(GLubyte* out, const GLubyte* in) { out[R8IDX] = in[0]; out[G8IDX] = in[1]; out[B8IDX] = in[2]; out[A8IDX] = in[3]; } static inline void _parseColourFromFloat4(GLubyte* out, const GLubyte* in) { GLfloat* fin = (GLfloat*) in; out[R8IDX] = (GLubyte) (fin[0] * 255.0f); out[G8IDX] = (GLubyte) (fin[1] * 255.0f); out[B8IDX] = (GLubyte) (fin[2] * 255.0f); out[A8IDX] = (GLubyte) (fin[3] * 255.0f); } static inline void _parseColourFromFloat3(GLubyte* out, const GLubyte* in) { out[A8IDX] = 255; out[R8IDX] = (GLubyte) ((GLfloat) in[0]) * 255.0f; out[G8IDX] = (GLubyte) ((GLfloat) in[1]) * 255.0f; out[B8IDX] = (GLubyte) ((GLfloat) in[2]) * 255.0f; } static inline void _constVec2Zero(GLfloat* out, const GLubyte* in) { out[0] = 0.0f; out[1] = 0.0f; } static inline void _constVec3NegZ(GLfloat* out, const GLubyte* in) { out[0] = 0.0f; out[1] = 0.0f; out[2] = -1.0f; } static inline void _constVec4One(GLfloat* out, const GLubyte* in) { out[0] = 1.0f; out[1] = 1.0f; out[2] = 1.0f; out[3] = 1.0f; } static inline void _constColourOne(GLubyte* out, const GLubyte* in) { out[0] = 255; out[1] = 255; out[2] = 255; out[3] = 255; } typedef GLuint (*IndexParseFunc)(const GLubyte* in); static inline GLuint _parseUByteIndex(const GLubyte* in) { return (GLuint) *in; } static inline GLuint _parseUIntIndex(const GLubyte* in) { return *((GLuint*) in); } static inline GLuint _parseUShortIndex(const GLubyte* in) { return *((GLshort*) in); } static inline IndexParseFunc _calcParseIndexFunc(GLenum type) { switch(type) { case GL_UNSIGNED_BYTE: return &_parseUByteIndex; break; case GL_UNSIGNED_INT: return &_parseUIntIndex; break; case GL_UNSIGNED_SHORT: default: break; } return &_parseUShortIndex; } /* There was a bug in this macro that shipped with Kos * which has now been fixed. But just in case... */ #undef mat_trans_single3_nodiv #define mat_trans_single3_nodiv(x, y, z) { \ register float __x __asm__("fr12") = (x); \ register float __y __asm__("fr13") = (y); \ register float __z __asm__("fr14") = (z); \ __asm__ __volatile__( \ "fldi1 fr15\n" \ "ftrv xmtrx, fv12\n" \ : "=f" (__x), "=f" (__y), "=f" (__z) \ : "0" (__x), "1" (__y), "2" (__z) \ : "fr15"); \ x = __x; y = __y; z = __z; \ } /* FIXME: Is this right? Shouldn't it be fr12->15? */ #undef mat_trans_normal3 #define mat_trans_normal3(x, y, z) { \ register float __x __asm__("fr8") = (x); \ register float __y __asm__("fr9") = (y); \ register float __z __asm__("fr10") = (z); \ __asm__ __volatile__( \ "fldi0 fr11\n" \ "ftrv xmtrx, fv8\n" \ : "=f" (__x), "=f" (__y), "=f" (__z) \ : "0" (__x), "1" (__y), "2" (__z) \ : "fr11"); \ x = __x; y = __y; z = __z; \ } static inline void transformToEyeSpace(GLfloat* point) { _matrixLoadModelView(); mat_trans_single3_nodiv(point[0], point[1], point[2]); } static inline void transformNormalToEyeSpace(GLfloat* normal) { _matrixLoadNormal(); mat_trans_normal3(normal[0], normal[1], normal[2]); } static inline void swapVertex(ClipVertex* v1, ClipVertex* v2) { static ClipVertex tmp; tmp = *v1; *v1 = *v2; *v2 = tmp; } static inline FloatParseFunc _calcVertexParseFunc() { switch(VERTEX_POINTER.type) { case GL_SHORT: { if(VERTEX_POINTER.size == 3) { return &_parseVec3FromShort3; } } break; case GL_INT: { if(VERTEX_POINTER.size == 3) { return &_parseVec3FromInt3; } } break; case GL_FLOAT: { if(VERTEX_POINTER.size == 3) { return &_parseVec3FromFloat3; } else if(VERTEX_POINTER.size == 2) { return &_parseVec3FromFloat2; } } break; default: break; } return NULL; } static inline ByteParseFunc _calcDiffuseParseFunc() { if((ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) != DIFFUSE_ENABLED_FLAG) { return &_constColourOne; } switch(DIFFUSE_POINTER.type) { case GL_BYTE: case GL_UNSIGNED_BYTE: { if(DIFFUSE_POINTER.size == 4) { return &_parseColourFromUByte4; } } break; case GL_FLOAT: { if(DIFFUSE_POINTER.size == 3) { return &_parseColourFromFloat3; } else if(DIFFUSE_POINTER.size == 4) { return &_parseColourFromFloat4; } } break; default: break; } return &_constColourOne; } static inline FloatParseFunc _calcUVParseFunc() { if((ENABLED_VERTEX_ATTRIBUTES & UV_ENABLED_FLAG) != UV_ENABLED_FLAG) { return &_constVec2Zero; } switch(UV_POINTER.type) { case GL_FLOAT: { if(UV_POINTER.size == 2) { return &_parseVec2FromFloat2; } } break; default: break; } return &_constVec2Zero; } static inline FloatParseFunc _calcSTParseFunc() { if((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG) { return &_constVec2Zero; } switch(ST_POINTER.type) { case GL_FLOAT: { if(ST_POINTER.size == 2) { return &_parseVec2FromFloat2; } } break; default: break; } return &_constVec2Zero; } static inline FloatParseFunc _calcNormalParseFunc() { if((ENABLED_VERTEX_ATTRIBUTES & NORMAL_ENABLED_FLAG) != NORMAL_ENABLED_FLAG) { return &_constVec3NegZ; } switch(NORMAL_POINTER.type) { case GL_SHORT: { if(NORMAL_POINTER.size == 3) { return &_parseVec3FromShort3; } } break; case GL_INT: { if(NORMAL_POINTER.size == 3) { return &_parseVec3FromInt3; } } break; case GL_FLOAT: { if(NORMAL_POINTER.size == 3) { return &_parseVec3FromFloat3; } else if(NORMAL_POINTER.size == 2) { return &_parseVec3FromFloat2; } } break; default: break; } return &_constVec3NegZ; } static inline void _buildTriangle(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i) { if(((i + 1) % 3) == 0) { vertex->flags = PVR_CMD_VERTEX_EOL; } } static inline GLsizei fast_mod(const GLsizei input, const GLsizei ceil) { return input >= ceil ? input % ceil : input; } static inline void _buildQuad(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i) { if((i + 1) % 4 == 0) { previous->flags = PVR_CMD_VERTEX_EOL; swapVertex(previous, vertex); } } static void _buildTriangleFan(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i) { if(i == 2) { swapVertex(previous, vertex); vertex->flags = PVR_CMD_VERTEX_EOL; } else if(i > 2) { ClipVertex* next = vertex + 1; *next = *first; swapVertex(next, vertex); vertex = next + 1; *vertex = *previous; vertex->flags = PVR_CMD_VERTEX_EOL; } } static void _buildStrip(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i) { if(!next) { /* If the mode was triangle strip, then the last vertex is the last vertex */ vertex->flags = PVR_CMD_VERTEX_EOL; } } static inline PolyBuildFunc _calcBuildFunc(const GLenum type) { switch(type) { case GL_TRIANGLES: return &_buildTriangle; break; case GL_QUADS: return &_buildQuad; break; case GL_TRIANGLE_FAN: case GL_POLYGON: return &_buildTriangleFan; break; default: break; } return &_buildStrip; } static void generate(AlignedVector* output, const GLenum mode, const GLsizei first, const GLsizei count, const GLubyte* indices, const GLenum type, const GLboolean doTexture, const GLboolean doMultitexture, const GLboolean doLighting) { /* Read from the client buffers and generate an array of ClipVertices */ const GLuint vstride = (VERTEX_POINTER.stride) ? VERTEX_POINTER.stride : VERTEX_POINTER.size * byte_size(VERTEX_POINTER.type); const GLuint cstride = (DIFFUSE_POINTER.stride) ? DIFFUSE_POINTER.stride : DIFFUSE_POINTER.size * byte_size(DIFFUSE_POINTER.type); const GLuint uvstride = (UV_POINTER.stride) ? UV_POINTER.stride : UV_POINTER.size * byte_size(UV_POINTER.type); const GLuint ststride = (ST_POINTER.stride) ? ST_POINTER.stride : ST_POINTER.size * byte_size(ST_POINTER.type); const GLuint nstride = (NORMAL_POINTER.stride) ? NORMAL_POINTER.stride : NORMAL_POINTER.size * byte_size(NORMAL_POINTER.type); const GLsizei max = first + count; const GLsizei spaceNeeded = (mode == GL_POLYGON || mode == GL_TRIANGLE_FAN) ? ((count - 2) * 3) : count; /* Make sure we have room for the output */ ClipVertex* vertex = aligned_vector_resize(output, spaceNeeded); const FloatParseFunc vertexFunc = _calcVertexParseFunc(); const ByteParseFunc diffuseFunc = _calcDiffuseParseFunc(); const FloatParseFunc uvFunc = _calcUVParseFunc(); const FloatParseFunc stFunc = _calcSTParseFunc(); const FloatParseFunc normalFunc = _calcNormalParseFunc(); const PolyBuildFunc buildFunc = _calcBuildFunc(mode); const IndexParseFunc indexFunc = _calcParseIndexFunc(type); const GLsizei type_byte_size = byte_size(type); ClipVertex* previous = NULL; ClipVertex* firstV = vertex; ClipVertex* next = NULL; ClipVertex* target = NULL; GLsizei i, j = 0; GLuint idx; if(!indices) { GLubyte* vptr = VERTEX_POINTER.ptr + (first * vstride); GLubyte* cptr = DIFFUSE_POINTER.ptr + (first * cstride); GLubyte* uvptr = UV_POINTER.ptr + (first * uvstride); GLubyte* stptr = ST_POINTER.ptr + (first * ststride); GLubyte* nptr = NORMAL_POINTER.ptr + (first * nstride); for(j = 0; j < count; ++j, ++vertex) { if(mode == GL_QUADS) { /* Performance optimisation to prevent copying to a temporary */ GLsizei mod = (j + 1) % 4; if(mod == 0) { target = vertex - 1; target->flags = PVR_CMD_VERTEX; } else if(mod == 3) { target = vertex + 1; target->flags = PVR_CMD_VERTEX_EOL; } else { target = vertex; target->flags = PVR_CMD_VERTEX; } } else { target = vertex; target->flags = PVR_CMD_VERTEX; } vertexFunc(target->xyz, vptr); diffuseFunc(target->bgra, cptr); vptr += vstride; cptr += cstride; if(doTexture) { uvFunc(target->uv, uvptr); uvptr += uvstride; } if(doMultitexture) { stFunc(target->st, stptr); stptr += ststride; } if(doLighting) { normalFunc(target->nxyz, nptr); nptr += nstride; } if(mode != GL_QUADS) { next = (j < count - 1) ? vertex + 1 : NULL; previous = (j > 0) ? vertex - 1 : NULL; buildFunc(firstV, previous, vertex, next, j); } } } else { for(i = first; i < max; ++i, ++j, ++vertex) { if(mode == GL_QUADS) { /* Performance optimisation to prevent copying to a temporary */ GLsizei mod = (j + 1) % 4; if(mod == 0) { target = vertex - 1; target->flags = PVR_CMD_VERTEX; } else if(mod == 3) { target = vertex + 1; target->flags = PVR_CMD_VERTEX_EOL; } else { target = vertex; target->flags = PVR_CMD_VERTEX; } } else { target = vertex; target->flags = PVR_CMD_VERTEX; } idx = (indices) ? indexFunc(&indices[type_byte_size * i]) : i; vertexFunc(target->xyz, VERTEX_POINTER.ptr + (idx * vstride)); diffuseFunc(target->bgra, DIFFUSE_POINTER.ptr + (idx * cstride)); if(doTexture) { uvFunc(target->uv, UV_POINTER.ptr + (idx * uvstride)); } if(doMultitexture) { stFunc(target->st, ST_POINTER.ptr + (idx * ststride)); } if(doLighting) { normalFunc(target->nxyz, NORMAL_POINTER.ptr + (idx * nstride)); } if(mode != GL_QUADS) { next = (j < count - 1) ? vertex + 1 : NULL; previous = (j > 0) ? vertex - 1 : NULL; buildFunc(firstV, previous, vertex, next, j); } } } } static void transform(AlignedVector* vertices) { /* Perform modelview transform, storing W */ ClipVertex* vertex = (ClipVertex*) vertices->data; _applyRenderMatrix(); /* Apply the Render Matrix Stack */ GLsizei i = vertices->size; while(i--) { register float __x __asm__("fr12") = (vertex->xyz[0]); register float __y __asm__("fr13") = (vertex->xyz[1]); register float __z __asm__("fr14") = (vertex->xyz[2]); register float __w __asm__("fr15"); __asm__ __volatile__( "fldi1 fr15\n" "ftrv xmtrx,fv12\n" : "=f" (__x), "=f" (__y), "=f" (__z), "=f" (__w) : "0" (__x), "1" (__y), "2" (__z), "3" (__w) ); vertex->xyz[0] = __x; vertex->xyz[1] = __y; vertex->xyz[2] = __z; vertex->w = __w; ++vertex; } } static void clip(AlignedVector* vertices) { /* Perform clipping, generating new vertices as necessary */ static AlignedVector* CLIP_BUFFER = NULL; /* First entry into this, allocate the clip buffer */ if(!CLIP_BUFFER) { CLIP_BUFFER = (AlignedVector*) malloc(sizeof(AlignedVector)); aligned_vector_init(CLIP_BUFFER, sizeof(ClipVertex)); } /* Make sure we allocate roughly enough space */ aligned_vector_reserve(CLIP_BUFFER, vertices->size * 1.5); /* Start from empty */ aligned_vector_resize(CLIP_BUFFER, 0); /* Now perform clipping! */ clipTriangleStrip(vertices, CLIP_BUFFER); /* Copy the clip buffer over the vertices */ aligned_vector_resize(vertices, CLIP_BUFFER->size); memcpy(vertices->data, CLIP_BUFFER->data, CLIP_BUFFER->size * CLIP_BUFFER->element_size); } static void mat_transform3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t inStride, const uint32_t outStride) { uint8_t* dataIn = (uint8_t*) xyz; uint8_t* dataOut = (uint8_t*) xyzOut; uint32_t i = count; while(i--) { float* in = (float*) dataIn; float* out = (float*) dataOut; mat_trans_single3_nodiv_nomod(in[0], in[1], in[2], out[0], out[1], out[2]); dataIn += inStride; dataOut += outStride; } } static void mat_transform_normal3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t inStride, const uint32_t outStride) { uint8_t* dataIn = (uint8_t*) xyz; uint8_t* dataOut = (uint8_t*) xyzOut; uint32_t i = count; while(i--) { float* in = (float*) dataIn; float* out = (float*) dataOut; mat_trans_normal3_nomod(in[0], in[1], in[2], out[0], out[1], out[2]); dataIn += inStride; dataOut += outStride; } } static void light(AlignedVector* vertices) { if(!isLightingEnabled()) { return; } typedef struct { float xyz[3]; float n[3]; } EyeSpaceData; static AlignedVector* eye_space_data = NULL; if(!eye_space_data) { eye_space_data = (AlignedVector*) malloc(sizeof(AlignedVector)); aligned_vector_init(eye_space_data, sizeof(EyeSpaceData)); } aligned_vector_resize(eye_space_data, vertices->size); /* Perform lighting calculations and manipulate the colour */ ClipVertex* vertex = (ClipVertex*) vertices->data; EyeSpaceData* eye_space = (EyeSpaceData*) eye_space_data->data; _matrixLoadModelView(); mat_transform3(vertex->xyz, eye_space->xyz, vertices->size, sizeof(ClipVertex), sizeof(EyeSpaceData)); _matrixLoadNormal(); mat_transform_normal3(vertex->nxyz, eye_space->n, vertices->size, sizeof(ClipVertex), sizeof(EyeSpaceData)); GLsizei i; EyeSpaceData* ES = aligned_vector_at(eye_space_data, 0); for(i = 0; i < vertices->size; ++i, ++vertex, ++ES) { /* We ignore diffuse colour when lighting is enabled. If GL_COLOR_MATERIAL is enabled * then the lighting calculation should possibly take it into account */ GLfloat total [] = {0.0f, 0.0f, 0.0f, 0.0f}; GLfloat to_add [] = {0.0f, 0.0f, 0.0f, 0.0f}; GLubyte j; for(j = 0; j < MAX_LIGHTS; ++j) { if(isLightEnabled(j)) { calculateLightingContribution(j, ES->xyz, ES->n, to_add); total[0] += to_add[0]; total[1] += to_add[1]; total[2] += to_add[2]; total[3] += to_add[3]; } } vertex->bgra[A8IDX] = (GLubyte) (255.0f * total[3]); vertex->bgra[R8IDX] = (GLubyte) (255.0f * total[0]); vertex->bgra[G8IDX] = (GLubyte) (255.0f * total[1]); vertex->bgra[B8IDX] = (GLubyte) (255.0f * total[2]); } } static void divide(AlignedVector* vertices) { /* Perform perspective divide on each vertex */ ClipVertex* vertex = (ClipVertex*) vertices->data; GLsizei i = vertices->size; while(i--) { vertex->xyz[2] = 1.0f / vertex->w; vertex->xyz[0] *= vertex->xyz[2]; vertex->xyz[1] *= vertex->xyz[2]; ++vertex; } } static void push(const AlignedVector* vertices, PolyList* activePolyList, GLshort textureUnit) { /* Copy the vertices to the active poly list */ // Make room for the element + the header ClipVertex* dst = (ClipVertex*) aligned_vector_extend(&activePolyList->vector, vertices->size + 1); // Store a pointer to the header PVRHeader* header = (PVRHeader*) dst; // Compile pvr_poly_cxt_t cxt = *getPVRContext(); cxt.list_type = activePolyList->list_type; _glUpdatePVRTextureContext(&cxt, textureUnit); pvr_poly_compile(&header->hdr, &cxt); // Point dest at the first new vertex to populate, if we're not sending a header // we won't increment and instead overwrite the header we just created with the // first vertex dst++; ClipVertex* vin = aligned_vector_at(vertices, 0); ClipVertex* vout = dst; GLuint i = vertices->size; while(i--) { vin->oargb = 0; *vout = *vin; ++vout; ++vin; } } static void submitVertices(GLenum mode, GLsizei first, GLsizei count, GLenum type, const GLvoid* indices) { static AlignedVector* buffer = NULL; /* Do nothing if vertices aren't enabled */ if(!(ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG)) { return; } GLboolean doMultitexture, doTexture, doLighting; GLint activeTexture; glGetIntegerv(GL_ACTIVE_TEXTURE_ARB, &activeTexture); glActiveTextureARB(GL_TEXTURE0); glGetBooleanv(GL_TEXTURE_2D, &doTexture); glActiveTextureARB(GL_TEXTURE1); glGetBooleanv(GL_TEXTURE_2D, &doMultitexture); doLighting = isLightingEnabled(); profiler_push(__func__); /* Initialize the buffer on first call */ if(!buffer) { buffer = (AlignedVector*) malloc(sizeof(AlignedVector)); aligned_vector_init(buffer, sizeof(ClipVertex)); /* Reserve 64k up-front */ aligned_vector_reserve(buffer, 64 * 1024); } else { /* Else, resize to zero (this will retain the allocated memory) */ aligned_vector_resize(buffer, 0); } profiler_checkpoint("allocate"); generate(buffer, mode, first, count, (GLubyte*) indices, type, doTexture, doMultitexture, doLighting); profiler_checkpoint("generate"); light(buffer); profiler_checkpoint("light"); transform(buffer); profiler_checkpoint("transform"); if(isClippingEnabled()) { clip(buffer); } profiler_checkpoint("clip"); divide(buffer); profiler_checkpoint("divide"); push(buffer, activePolyList(), 0); profiler_checkpoint("push"); /* Now, if multitexturing is enabled, we want to send exactly the same vertices again, except: - We want to enable blending, and send them to the TR list - We want to set the depth func to GL_EQUAL - We want to set the second texture ID - We want to set the uv coordinates to the passed st ones */ if(!doMultitexture) { /* Multitexture actively disabled */ profiler_pop(); return; } TextureObject* texture1 = getTexture1(); if(!texture1 || ((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG)) { /* Multitexture implicitly disabled */ profiler_pop(); return; } ClipVertex* vertex = (ClipVertex*) aligned_vector_at(buffer, 0); /* Copy ST coordinates to UV ones */ GLsizei i = buffer->size; while(i--) { vertex->uv[0] = vertex->st[0]; vertex->uv[1] = vertex->st[1]; ++vertex; } /* Store state, as we're about to mess around with it */ GLint depthFunc, blendSrc, blendDst; glGetIntegerv(GL_DEPTH_FUNC, &depthFunc); glGetIntegerv(GL_BLEND_SRC, &blendSrc); glGetIntegerv(GL_BLEND_DST, &blendDst); GLboolean blendEnabled = glIsEnabled(GL_BLEND); GLboolean depthEnabled = glIsEnabled(GL_DEPTH_TEST); glDepthFunc(GL_EQUAL); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); /* Send the buffer again to the transparent list */ push(buffer, transparentPolyList(), 1); /* Reset state */ glDepthFunc(depthFunc); glBlendFunc(blendSrc, blendDst); (blendEnabled) ? glEnable(GL_BLEND) : glDisable(GL_BLEND); (depthEnabled) ? glEnable(GL_DEPTH_TEST) : glDisable(GL_DEPTH_TEST); } void APIENTRY glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid* indices) { TRACE(); if(checkImmediateModeInactive(__func__)) { return; } submitVertices(mode, 0, count, type, indices); } void APIENTRY glDrawArrays(GLenum mode, GLint first, GLsizei count) { TRACE(); if(checkImmediateModeInactive(__func__)) { return; } submitVertices(mode, first, count, GL_UNSIGNED_SHORT, NULL); } void APIENTRY glEnableClientState(GLenum cap) { TRACE(); switch(cap) { case GL_VERTEX_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= VERTEX_ENABLED_FLAG; break; case GL_COLOR_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; break; case GL_NORMAL_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= NORMAL_ENABLED_FLAG; break; case GL_TEXTURE_COORD_ARRAY: (ACTIVE_CLIENT_TEXTURE) ? (ENABLED_VERTEX_ATTRIBUTES |= ST_ENABLED_FLAG): (ENABLED_VERTEX_ATTRIBUTES |= UV_ENABLED_FLAG); break; default: _glKosThrowError(GL_INVALID_ENUM, "glEnableClientState"); } } void APIENTRY glDisableClientState(GLenum cap) { TRACE(); switch(cap) { case GL_VERTEX_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~VERTEX_ENABLED_FLAG; break; case GL_COLOR_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~DIFFUSE_ENABLED_FLAG; break; case GL_NORMAL_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~NORMAL_ENABLED_FLAG; break; case GL_TEXTURE_COORD_ARRAY: (ACTIVE_CLIENT_TEXTURE) ? (ENABLED_VERTEX_ATTRIBUTES &= ~ST_ENABLED_FLAG): (ENABLED_VERTEX_ATTRIBUTES &= ~UV_ENABLED_FLAG); break; default: _glKosThrowError(GL_INVALID_ENUM, "glDisableClientState"); } } void APIENTRY glClientActiveTextureARB(GLenum texture) { TRACE(); if(texture < GL_TEXTURE0_ARB || texture > GL_TEXTURE0_ARB + MAX_TEXTURE_UNITS) { _glKosThrowError(GL_INVALID_ENUM, "glClientActiveTextureARB"); } if(_glKosHasError()) { _glKosPrintError(); return; } ACTIVE_CLIENT_TEXTURE = (texture == GL_TEXTURE1_ARB) ? 1 : 0; } void APIENTRY glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); AttribPointer* tointer = (ACTIVE_CLIENT_TEXTURE == 0) ? &UV_POINTER : &ST_POINTER; tointer->ptr = pointer; tointer->stride = stride; tointer->type = type; tointer->size = size; } void APIENTRY glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); VERTEX_POINTER.ptr = pointer; VERTEX_POINTER.stride = stride; VERTEX_POINTER.type = type; VERTEX_POINTER.size = size; } void APIENTRY glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); DIFFUSE_POINTER.ptr = pointer; DIFFUSE_POINTER.stride = stride; DIFFUSE_POINTER.type = type; DIFFUSE_POINTER.size = size; } void APIENTRY glNormalPointer(GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); NORMAL_POINTER.ptr = pointer; NORMAL_POINTER.stride = stride; NORMAL_POINTER.type = type; NORMAL_POINTER.size = 3; }