#include #include #include #include "private.h" static GLfloat SCENE_AMBIENT [] = {0.2, 0.2, 0.2, 1.0}; static GLboolean VIEWER_IN_EYE_COORDINATES = GL_TRUE; static GLenum COLOR_CONTROL = GL_SINGLE_COLOR; static GLboolean TWO_SIDED_LIGHTING = GL_FALSE; static GLenum COLOR_MATERIAL_MODE = GL_AMBIENT_AND_DIFFUSE; static LightSource LIGHTS[MAX_LIGHTS]; static Material MATERIAL; void initLights() { static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f}; static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f}; static GLfloat PARTIAL [] = {0.2f, 0.2f, 0.2f, 1.0f}; static GLfloat MOSTLY [] = {0.8f, 0.8f, 0.8f, 1.0f}; memcpy(MATERIAL.ambient, PARTIAL, sizeof(GLfloat) * 4); memcpy(MATERIAL.diffuse, MOSTLY, sizeof(GLfloat) * 4); memcpy(MATERIAL.specular, ZERO, sizeof(GLfloat) * 4); memcpy(MATERIAL.emissive, ZERO, sizeof(GLfloat) * 4); MATERIAL.exponent = 0.0f; GLubyte i; for(i = 0; i < MAX_LIGHTS; ++i) { memcpy(LIGHTS[i].ambient, ZERO, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].diffuse, ONE, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].specular, ONE, sizeof(GLfloat) * 4); if(i > 0) { memcpy(LIGHTS[i].diffuse, ZERO, sizeof(GLfloat) * 4); memcpy(LIGHTS[i].specular, ZERO, sizeof(GLfloat) * 4); } LIGHTS[i].position[0] = LIGHTS[i].position[1] = LIGHTS[i].position[3] = 0.0f; LIGHTS[i].position[2] = 1.0f; LIGHTS[i].spot_direction[0] = LIGHTS[i].spot_direction[1] = 0.0f; LIGHTS[i].spot_direction[2] = -1.0f; LIGHTS[i].spot_exponent = 0.0f; LIGHTS[i].spot_cutoff = 180.0f; LIGHTS[i].constant_attenuation = 1.0f; LIGHTS[i].linear_attenuation = 0.0f; LIGHTS[i].quadratic_attenuation = 0.0f; LIGHTS[i].is_directional = GL_FALSE; } } void APIENTRY glLightModelf(GLenum pname, const GLfloat param) { glLightModelfv(pname, ¶m); } void APIENTRY glLightModeli(GLenum pname, const GLint param) { glLightModeliv(pname, ¶m); } void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) { switch(pname) { case GL_LIGHT_MODEL_AMBIENT: memcpy(SCENE_AMBIENT, params, sizeof(GLfloat) * 4); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE; break; case GL_LIGHT_MODEL_TWO_SIDE: /* Not implemented */ default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightModeliv(GLenum pname, const GLint* params) { switch(pname) { case GL_LIGHT_MODEL_COLOR_CONTROL: COLOR_CONTROL = *params; break; case GL_LIGHT_MODEL_LOCAL_VIEWER: VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE; break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) { GLubyte idx = light & 0xF; if(idx >= MAX_LIGHTS) { return; } switch(pname) { case GL_AMBIENT: memcpy(LIGHTS[idx].ambient, params, sizeof(GLfloat) * 4); break; case GL_DIFFUSE: memcpy(LIGHTS[idx].diffuse, params, sizeof(GLfloat) * 4); break; case GL_SPECULAR: memcpy(LIGHTS[idx].specular, params, sizeof(GLfloat) * 4); break; case GL_POSITION: { _matrixLoadModelView(); memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4); LIGHTS[idx].is_directional = (params[3] == 0.0f) ? GL_TRUE : GL_FALSE; if(LIGHTS[idx].is_directional) { //FIXME: Do we need to rotate directional lights? } else { mat_trans_single4( LIGHTS[idx].position[0], LIGHTS[idx].position[1], LIGHTS[idx].position[2], LIGHTS[idx].position[3] ); } } break; case GL_SPOT_DIRECTION: { LIGHTS[idx].spot_direction[0] = params[0]; LIGHTS[idx].spot_direction[1] = params[1]; LIGHTS[idx].spot_direction[2] = params[2]; } break; case GL_CONSTANT_ATTENUATION: case GL_LINEAR_ATTENUATION: case GL_QUADRATIC_ATTENUATION: case GL_SPOT_CUTOFF: case GL_SPOT_EXPONENT: glLightf(light, pname, *params); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) { GLubyte idx = light & 0xF; if(idx >= MAX_LIGHTS) { return; } switch(pname) { case GL_CONSTANT_ATTENUATION: LIGHTS[idx].constant_attenuation = param; break; case GL_LINEAR_ATTENUATION: LIGHTS[idx].linear_attenuation = param; break; case GL_QUADRATIC_ATTENUATION: LIGHTS[idx].quadratic_attenuation = param; break; case GL_SPOT_EXPONENT: LIGHTS[idx].spot_exponent = param; break; case GL_SPOT_CUTOFF: LIGHTS[idx].spot_cutoff = param; break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } void APIENTRY glMaterialf(GLenum face, GLenum pname, const GLfloat param) { if(face == GL_BACK || pname != GL_SHININESS) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } MATERIAL.exponent = param; } void APIENTRY glMateriali(GLenum face, GLenum pname, const GLint param) { glMaterialf(face, pname, param); } void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) { if(pname == GL_SHININESS) { glMaterialf(face, pname, *params); return; } if(face == GL_BACK) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } switch(pname) { case GL_AMBIENT: memcpy(MATERIAL.ambient, params, sizeof(GLfloat) * 4); break; case GL_DIFFUSE: memcpy(MATERIAL.diffuse, params, sizeof(GLfloat) * 4); break; case GL_SPECULAR: memcpy(MATERIAL.specular, params, sizeof(GLfloat) * 4); break; case GL_EMISSION: memcpy(MATERIAL.specular, params, sizeof(GLfloat) * 4); break; case GL_AMBIENT_AND_DIFFUSE: { glMaterialfv(face, GL_AMBIENT, params); glMaterialfv(face, GL_DIFFUSE, params); } break; case GL_COLOR_INDEXES: default: { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); } } } void glColorMaterial(GLenum face, GLenum mode) { if(face != GL_FRONT_AND_BACK) { _glKosThrowError(GL_INVALID_ENUM, __func__); _glKosPrintError(); return; } GLenum validModes[] = {GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE, GL_EMISSION, GL_SPECULAR, 0}; if(_glCheckValidEnum(mode, validModes, __func__) != 0) { return; } COLOR_MATERIAL_MODE = mode; } static inline GLboolean isDiffuseColorMaterial() { return (COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE); } static inline GLboolean isAmbientColorMaterial() { return (COLOR_MATERIAL_MODE == GL_AMBIENT || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE); } static inline GLboolean isSpecularColorMaterial() { return (COLOR_MATERIAL_MODE == GL_SPECULAR); } inline void initVec3(struct vec3f* v, const GLfloat* src) { memcpy(v, src, sizeof(GLfloat) * 3); } /* Fast POW Implementation - Less accurate, but much faster than math.h */ #define EXP_A 184 #define EXP_C 16249 static float FEXP(float y) { union { float d; struct { short j, i; } n; } eco; eco.n.i = EXP_A * (y) + (EXP_C); eco.n.j = 0; return eco.d; } static float FLOG(float y) { int *nTemp = (int *)&y; y = (*nTemp) >> 16; return (y - EXP_C) / EXP_A; } static float FPOW(float b, float p) { return FEXP(FLOG(b) * p); } void _glCalculateLightingContribution(const GLint light, const GLfloat* pos, const GLfloat* normal, uint8_t* bgra, GLfloat* colour) __attribute__((optimize("fast-math"))); void _glCalculateLightingContribution(const GLint light, const GLfloat* pos, const GLfloat* normal, uint8_t* bgra, GLfloat* colour) { LightSource* l = &LIGHTS[light]; struct vec3f L = { l->position[0], l->position[1], l->position[2] }; if(!l->is_directional) { L.x -= pos[0]; L.y -= pos[1]; L.z -= pos[2]; } struct vec3f N = { normal[0], normal[1], normal[2] }; struct vec3f V = { pos[0], pos[1], pos[2] }; GLfloat d; vec3f_length(L.x, L.y, L.z, d); GLfloat oneOverL = 1.0f / d; L.x *= oneOverL; L.y *= oneOverL; L.z *= oneOverL; vec3f_normalize(V.x, V.y, V.z); GLfloat NdotL, VdotN; vec3f_dot(N.x, N.y, N.z, L.x, L.y, L.z, NdotL); vec3f_dot(V.x, V.y, V.z, N.x, N.y, N.z, VdotN); GLfloat VdotR = VdotN - NdotL; GLfloat specularPower = FPOW(VdotR > 0 ? VdotR : 0, MATERIAL.exponent); GLboolean colorMaterial = _glIsColorMaterialEnabled(); GLfloat mD [] = { (colorMaterial && isDiffuseColorMaterial()) ? ((GLfloat)bgra[R8IDX]) / 255.0f : MATERIAL.diffuse[0], (colorMaterial && isDiffuseColorMaterial()) ? ((GLfloat)bgra[G8IDX]) / 255.0f : MATERIAL.diffuse[1], (colorMaterial && isDiffuseColorMaterial()) ? ((GLfloat)bgra[B8IDX]) / 255.0f : MATERIAL.diffuse[2], (colorMaterial && isDiffuseColorMaterial()) ? ((GLfloat)bgra[A8IDX]) / 255.0f : MATERIAL.diffuse[3] }; GLfloat mA [] = { (colorMaterial && isAmbientColorMaterial()) ? ((GLfloat)bgra[R8IDX]) / 255.0f : MATERIAL.ambient[0], (colorMaterial && isAmbientColorMaterial()) ? ((GLfloat)bgra[G8IDX]) / 255.0f : MATERIAL.ambient[1], (colorMaterial && isAmbientColorMaterial()) ? ((GLfloat)bgra[B8IDX]) / 255.0f : MATERIAL.ambient[2], (colorMaterial && isAmbientColorMaterial()) ? ((GLfloat)bgra[A8IDX]) / 255.0f : MATERIAL.ambient[3] }; GLfloat mS [] = { (colorMaterial && isSpecularColorMaterial()) ? ((GLfloat)bgra[R8IDX]) / 255.0f : MATERIAL.specular[0], (colorMaterial && isSpecularColorMaterial()) ? ((GLfloat)bgra[G8IDX]) / 255.0f : MATERIAL.specular[1], (colorMaterial && isSpecularColorMaterial()) ? ((GLfloat)bgra[B8IDX]) / 255.0f : MATERIAL.specular[2], (colorMaterial && isSpecularColorMaterial()) ? ((GLfloat)bgra[A8IDX]) / 255.0f : MATERIAL.specular[3] }; colour[0] = l->ambient[0] * mA[0]; colour[1] = l->ambient[1] * mA[1]; colour[2] = l->ambient[2] * mA[2]; colour[3] = mD[3]; if(NdotL >= 0) { colour[0] += (l->diffuse[0] * mD[0] * NdotL + l->specular[0] * mS[0] * specularPower); colour[1] += (l->diffuse[1] * mD[1] * NdotL + l->specular[1] * mS[1] * specularPower); colour[2] += (l->diffuse[2] * mD[2] * NdotL + l->specular[2] * mS[2] * specularPower); } if(!l->is_directional) { GLfloat att = ( 1.0f / (l->constant_attenuation + (l->linear_attenuation * d) + (l->quadratic_attenuation * d * d)) ); colour[0] *= att; colour[1] *= att; colour[2] *= att; } if(colour[0] > 1.0f) colour[0] = 1.0f; if(colour[1] > 1.0f) colour[1] = 1.0f; if(colour[2] > 1.0f) colour[2] = 1.0f; if(colour[3] > 1.0f) colour[3] = 1.0f; }