#include #include #include #include #include "../include/gl.h" #include "../include/glext.h" #include "private.h" typedef struct { const void* ptr; GLenum type; GLsizei stride; GLint size; } AttribPointer; static AttribPointer VERTEX_POINTER; static AttribPointer UV_POINTER; static AttribPointer ST_POINTER; static AttribPointer NORMAL_POINTER; static AttribPointer DIFFUSE_POINTER; #define VERTEX_ENABLED_FLAG (1 << 0) #define UV_ENABLED_FLAG (1 << 1) #define ST_ENABLED_FLAG (1 << 2) #define DIFFUSE_ENABLED_FLAG (1 << 3) #define NORMAL_ENABLED_FLAG (1 << 4) static GLuint ENABLED_VERTEX_ATTRIBUTES = 0; static GLubyte ACTIVE_CLIENT_TEXTURE = 0; void initAttributePointers() { TRACE(); VERTEX_POINTER.ptr = NULL; VERTEX_POINTER.stride = 0; VERTEX_POINTER.type = GL_FLOAT; VERTEX_POINTER.size = 4; DIFFUSE_POINTER.ptr = NULL; DIFFUSE_POINTER.stride = 0; DIFFUSE_POINTER.type = GL_FLOAT; DIFFUSE_POINTER.size = 4; UV_POINTER.ptr = NULL; UV_POINTER.stride = 0; UV_POINTER.type = GL_FLOAT; UV_POINTER.size = 4; ST_POINTER.ptr = NULL; ST_POINTER.stride = 0; ST_POINTER.type = GL_FLOAT; ST_POINTER.size = 4; NORMAL_POINTER.ptr = NULL; NORMAL_POINTER.stride = 0; NORMAL_POINTER.type = GL_FLOAT; NORMAL_POINTER.size = 3; } static GLuint byte_size(GLenum type) { switch(type) { case GL_BYTE: return sizeof(GLbyte); case GL_UNSIGNED_BYTE: return sizeof(GLubyte); case GL_SHORT: return sizeof(GLshort); case GL_UNSIGNED_SHORT: return sizeof(GLushort); case GL_INT: return sizeof(GLint); case GL_UNSIGNED_INT: return sizeof(GLuint); case GL_DOUBLE: return sizeof(GLdouble); case GL_FLOAT: default: return sizeof(GLfloat); } } static void _parseColour(float* out, const GLubyte* in, GLint size, GLenum type) { const float ONE_OVER_255 = 1.0f / 255.0f; switch(type) { case GL_BYTE: { case GL_UNSIGNED_BYTE: out[0] = ((GLfloat)in[0]) * ONE_OVER_255; out[1] = ((GLfloat)in[1]) * ONE_OVER_255; out[2] = ((GLfloat)in[2]) * ONE_OVER_255; out[3] = ((GLfloat)in[3]) * ONE_OVER_255; } break; case GL_SHORT: case GL_UNSIGNED_SHORT: /* FIXME!!!! */ break; case GL_INT: case GL_UNSIGNED_INT: /* FIXME!!!! */ break; case GL_FLOAT: case GL_DOUBLE: default: { out[0] = ((GLfloat*) in)[0]; out[1] = ((GLfloat*) in)[1]; out[2] = ((GLfloat*) in)[2]; out[3] = ((GLfloat*) in)[3]; } break; } } static void _parseFloats(GLfloat* out, const GLubyte* in, GLint size, GLenum type) { GLubyte i; switch(type) { case GL_SHORT: { GLshort* inp = (GLshort*) in; for(i = 0; i < size; ++i) { out[i] = (GLfloat) inp[i]; } } break; case GL_INT: { GLint* inp = (GLint*) in; for(i = 0; i < size; ++i) { out[i] = (GLfloat) inp[i]; } } break; case GL_FLOAT: case GL_DOUBLE: /* Double == Float */ default: { const GLfloat* ptr = (const GLfloat*) in; for(i = 0; i < size; ++i) out[i] = ptr[i]; } } } static void _parseIndex(GLuint* out, const GLubyte* in, GLenum type) { switch(type) { case GL_UNSIGNED_BYTE: *out = (GLuint) *in; break; case GL_UNSIGNED_INT: *out = *((GLuint*) in); break; case GL_UNSIGNED_SHORT: default: *out = *((GLshort*) in); } } /* There was a bug in this macro that shipped with Kos * which has now been fixed. But just in case... */ #undef mat_trans_single3_nodiv #define mat_trans_single3_nodiv(x, y, z) { \ register float __x __asm__("fr12") = (x); \ register float __y __asm__("fr13") = (y); \ register float __z __asm__("fr14") = (z); \ __asm__ __volatile__( \ "fldi1 fr15\n" \ "ftrv xmtrx, fv12\n" \ : "=f" (__x), "=f" (__y), "=f" (__z) \ : "0" (__x), "1" (__y), "2" (__z) \ : "fr15"); \ x = __x; y = __y; z = __z; \ } /* FIXME: Is this right? Shouldn't it be fr12->15? */ #undef mat_trans_normal3 #define mat_trans_normal3(x, y, z) { \ register float __x __asm__("fr8") = (x); \ register float __y __asm__("fr9") = (y); \ register float __z __asm__("fr10") = (z); \ __asm__ __volatile__( \ "fldi0 fr11\n" \ "ftrv xmtrx, fv8\n" \ : "=f" (__x), "=f" (__y), "=f" (__z) \ : "0" (__x), "1" (__y), "2" (__z) \ : "fr11"); \ x = __x; y = __y; z = __z; \ } static inline void transformToEyeSpace(GLfloat* point) { _matrixLoadModelView(); mat_trans_single3_nodiv(point[0], point[1], point[2]); } static inline void transformNormalToEyeSpace(GLfloat* normal) { _matrixLoadNormal(); mat_trans_normal3(normal[0], normal[1], normal[2]); } static void swapVertex(ClipVertex* v1, ClipVertex* v2) { ClipVertex tmp = *v1; *v1 = *v2; *v2 = tmp; } static void generate(AlignedVector* output, const GLenum mode, const GLsizei first, const GLsizei count, const GLubyte* indices, const GLenum type, const GLubyte* vptr, const GLubyte vstride, const GLubyte* cptr, const GLubyte cstride, const GLubyte* uvptr, const GLubyte uvstride, const GLubyte* nptr, const GLubyte nstride) { /* Read from the client buffers and generate an array of ClipVertices */ GLsizei max = first + count; GLsizei spaceNeeded = (mode == GL_POLYGON || mode == GL_TRIANGLE_FAN) ? ((count - 2) * 3) : count; /* Make sure we have room for the output */ aligned_vector_resize(output, spaceNeeded); ClipVertex* vertex = (ClipVertex*) output->data; GLsizei j; GLsizei i = 0; for(j = first; j < max; ++i, ++j, ++vertex) { vertex->flags = PVR_CMD_VERTEX; GLuint idx = j; if(indices) { _parseIndex(&idx, &indices[byte_size(type) * j], type); } _parseFloats(vertex->xyz, vptr + (idx * vstride), VERTEX_POINTER.size, VERTEX_POINTER.type); if(ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) { _parseColour(vertex->diffuse, cptr + (idx * cstride), DIFFUSE_POINTER.size, DIFFUSE_POINTER.type); } else { /* Default to white if colours are disabled */ vertex->diffuse[0] = vertex->diffuse[1] = vertex->diffuse[2] = vertex->diffuse[3] = 1.0f; } if(ENABLED_VERTEX_ATTRIBUTES & UV_ENABLED_FLAG) { _parseFloats(vertex->uv, uvptr + (idx * uvstride), UV_POINTER.size, UV_POINTER.type); } else { vertex->uv[0] = vertex->uv[1] = 0.0f; } if(ENABLED_VERTEX_ATTRIBUTES & NORMAL_ENABLED_FLAG) { _parseFloats(vertex->nxyz, nptr + (idx * nstride), NORMAL_POINTER.size, NORMAL_POINTER.type); } else { vertex->nxyz[0] = 0.0f; vertex->nxyz[1] = 0.0f; vertex->nxyz[2] = -1.0f; } switch(mode) { case GL_TRIANGLES: { if(((i + 1) % 3) == 0) { vertex->flags = PVR_CMD_VERTEX_EOL; } } break; case GL_QUADS: { if(((i + 1) % 4) == 0) { ClipVertex* previous = vertex - 1; previous->flags = PVR_CMD_VERTEX_EOL; swapVertex(previous, vertex); } } break; case GL_POLYGON: case GL_TRIANGLE_FAN: { ClipVertex* previous = vertex - 1; if(i == 2) { swapVertex(previous, vertex); vertex->flags = PVR_CMD_VERTEX_EOL; } else if(i > 2) { ClipVertex* first = (ClipVertex*) output->data; ClipVertex* previous = vertex - 1; ClipVertex* next = vertex + 1; *next = *first; swapVertex(next, vertex); vertex = next + 1; *vertex = *previous; vertex->flags = PVR_CMD_VERTEX_EOL; } } break; case GL_TRIANGLE_STRIP: default: { if(j == (max - 1)) { /* If the mode was triangle strip, then the last vertex is the last vertex */ vertex->flags = PVR_CMD_VERTEX_EOL; } } } } } static void transform(AlignedVector* vertices) { /* Perform modelview transform, storing W */ ClipVertex* vertex = (ClipVertex*) vertices->data; _applyRenderMatrix(); /* Apply the Render Matrix Stack */ GLsizei i; for(i = 0; i < vertices->size; ++i, ++vertex) { register float __x __asm__("fr12") = (vertex->xyz[0]); register float __y __asm__("fr13") = (vertex->xyz[1]); register float __z __asm__("fr14") = (vertex->xyz[2]); register float __w __asm__("fr15"); __asm__ __volatile__( "fldi1 fr15\n" "ftrv xmtrx,fv12\n" : "=f" (__x), "=f" (__y), "=f" (__z), "=f" (__w) : "0" (__x), "1" (__y), "2" (__z), "3" (__w) ); vertex->xyz[0] = __x; vertex->xyz[1] = __y; vertex->xyz[2] = __z; vertex->w = __w; } } static void clip(AlignedVector* vertices) { /* Perform clipping, generating new vertices as necessary */ static AlignedVector* CLIP_BUFFER = NULL; /* First entry into this, allocate the clip buffer */ if(!CLIP_BUFFER) { CLIP_BUFFER = (AlignedVector*) malloc(sizeof(AlignedVector)); aligned_vector_init(CLIP_BUFFER, sizeof(ClipVertex)); } /* Make sure we allocate roughly enough space */ aligned_vector_reserve(CLIP_BUFFER, vertices->size); /* Start from empty */ aligned_vector_resize(CLIP_BUFFER, 0); /* Now perform clipping! */ clipTriangleStrip(vertices, CLIP_BUFFER); /* Copy the clip buffer over the vertices */ aligned_vector_resize(vertices, CLIP_BUFFER->size); memcpy(vertices->data, CLIP_BUFFER->data, CLIP_BUFFER->size * CLIP_BUFFER->element_size); } static void mat_transform3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t stride) { uint8_t* dataIn = (uint8_t*) xyz; uint8_t* dataOut = (uint8_t*) xyzOut; uint32_t i = count; while(i--) { float* in = (float*) dataIn; float* out = (float*) dataOut; mat_trans_single3_nodiv_nomod(in[0], in[1], in[2], out[0], out[1], out[2]); dataIn += stride; dataOut += stride; } } static void mat_transform_normal3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t stride) { uint8_t* dataIn = (uint8_t*) xyz; uint8_t* dataOut = (uint8_t*) xyzOut; uint32_t i = count; while(i--) { float* in = (float*) dataIn; float* out = (float*) dataOut; mat_trans_normal3_nomod(in[0], in[1], in[2], out[0], out[1], out[2]); dataIn += stride; dataOut += stride; } } static void light(AlignedVector* vertices) { if(!isLightingEnabled()) { return; } /* Perform lighting calculations and manipulate the colour */ ClipVertex* vertex = (ClipVertex*) vertices->data; _matrixLoadModelView(); mat_transform3(vertex->xyz, vertex->xyzES, vertices->size, sizeof(ClipVertex)); _matrixLoadNormal(); mat_transform_normal3(vertex->nxyz, vertex->nES, vertices->size, sizeof(ClipVertex)); GLsizei i; for(i = 0; i < vertices->size; ++i, ++vertex) { /* We ignore diffuse colour when lighting is enabled. If GL_COLOR_MATERIAL is enabled * then the lighting calculation should possibly take it into account */ memset(vertex->diffuse, 0, sizeof(float) * 4); GLfloat to_add [] = {0.0f, 0.0f, 0.0f, 0.0f}; GLubyte j; for(j = 0; j < MAX_LIGHTS; ++j) { if(isLightEnabled(j)) { calculateLightingContribution(j, vertex->xyzES, vertex->nES, to_add); vertex->diffuse[0] += to_add[0]; vertex->diffuse[1] += to_add[1]; vertex->diffuse[2] += to_add[2]; vertex->diffuse[3] += to_add[3]; } } } } static void divide(AlignedVector* vertices) { /* Perform perspective divide on each vertex */ ClipVertex* vertex = (ClipVertex*) vertices->data; GLsizei i; for(i = 0; i < vertices->size; ++i, ++vertex) { vertex->xyz[2] = 1.0f / vertex->w; vertex->xyz[0] *= vertex->xyz[2]; vertex->xyz[1] *= vertex->xyz[2]; } } typedef struct { unsigned int list_type; pvr_poly_hdr_t hdr; } ListToHeader; #define MAX_LISTS 5 static void push(const AlignedVector* vertices, PolyList* activePolyList) { /* Copy the vertices to the active poly list */ static GLuint LIST_COUNTER = 0; static ListToHeader LAST_HEADERS[MAX_LISTS]; /* If the list was empty, this is the first submission this frame so we * always send the header in this case */ GLboolean listWasEmpty = activePolyList->vector.size > 0; // Make room for the element + the header PVRCommand* dst = (PVRCommand*) aligned_vector_extend(&activePolyList->vector, vertices->size); // Store a pointer to the header pvr_poly_hdr_t* hdr = (pvr_poly_hdr_t*) dst; // Compile pvr_poly_cxt_t cxt = *getPVRContext(); cxt.list_type = activePolyList->list_type; updatePVRTextureContext(&cxt, getTexture0()); pvr_poly_compile(hdr, &cxt); /* We store a list of the last "hdr" to be submitted for a list, and then compare before * specifying another one. Apparently it's quite slow to change header */ GLuint c; GLboolean sendHeader = GL_FALSE; GLboolean listFound = GL_FALSE; for(c = 0; c < LIST_COUNTER; ++c) { if(LAST_HEADERS[c].list_type == activePolyList->list_type) { /* Send the header if this was the first submission to this list, or the header has changed since * the last sent */ sendHeader = listWasEmpty || memcmp(&LAST_HEADERS[c].hdr, &hdr, sizeof(pvr_poly_hdr_t)) != 0; listFound = GL_TRUE; break; } } if(!listFound) { if(LIST_COUNTER == MAX_LISTS) { fprintf(stderr, "Ran out of space!\n"); } /* First time we've seen this list, add it to the array */ LAST_HEADERS[LIST_COUNTER].list_type = activePolyList->list_type; LAST_HEADERS[LIST_COUNTER++].hdr = *hdr; /* Send the header the first time */ sendHeader = GL_TRUE; } if(sendHeader) { // Point dest at the first new vertex to populate, if we're not sending a header // we won't increment and instead overwrite the header we just created with the // first vertex dst++; // Add one more to the list aligned_vector_extend(&activePolyList->vector, 1); } GLsizei i; ClipVertex* vin = aligned_vector_at(vertices, 0); for(i = 0; i < vertices->size; ++i, dst++) { pvr_vertex_t* vout = (pvr_vertex_t*) dst; vout->flags = vin->flags; vout->x = vin->xyz[0]; vout->y = vin->xyz[1]; vout->z = vin->xyz[2]; vout->u = vin->uv[0]; vout->v = vin->uv[1]; vout->argb = PVR_PACK_COLOR(vin->diffuse[3], vin->diffuse[0], vin->diffuse[1], vin->diffuse[2]); vout->oargb = 0; vin++; } } static void submitVertices(GLenum mode, GLsizei first, GLsizei count, GLenum type, const GLvoid* indices) { static AlignedVector* buffer = NULL; /* Do nothing if vertices aren't enabled */ if(!(ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG)) { return; } /* Initialize the buffer on first call */ if(!buffer) { buffer = (AlignedVector*) malloc(sizeof(AlignedVector)); aligned_vector_init(buffer, sizeof(ClipVertex)); /* Reserve 64k up-front */ aligned_vector_reserve(buffer, 64 * 1024); } else { /* Else, resize to zero (this will retain the allocated memory) */ aligned_vector_resize(buffer, 0); } GLubyte vstride = (VERTEX_POINTER.stride) ? VERTEX_POINTER.stride : VERTEX_POINTER.size * byte_size(VERTEX_POINTER.type); const GLubyte* vptr = VERTEX_POINTER.ptr; GLubyte cstride = (DIFFUSE_POINTER.stride) ? DIFFUSE_POINTER.stride : DIFFUSE_POINTER.size * byte_size(DIFFUSE_POINTER.type); const GLubyte* cptr = DIFFUSE_POINTER.ptr; GLubyte uvstride = (UV_POINTER.stride) ? UV_POINTER.stride : UV_POINTER.size * byte_size(UV_POINTER.type); const GLubyte* uvptr = UV_POINTER.ptr; GLubyte nstride = (NORMAL_POINTER.stride) ? NORMAL_POINTER.stride : NORMAL_POINTER.size * byte_size(NORMAL_POINTER.type); const GLubyte* nptr = NORMAL_POINTER.ptr; generate(buffer, mode, first, count, (GLubyte*) indices, type, vptr, vstride, cptr, cstride, uvptr, uvstride, nptr, nstride); light(buffer); transform(buffer); if(isClippingEnabled()) { clip(buffer); } divide(buffer); push(buffer, activePolyList()); } void APIENTRY glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid* indices) { TRACE(); if(checkImmediateModeInactive(__func__)) { return; } submitVertices(mode, 0, count, type, indices); } void APIENTRY glDrawArrays(GLenum mode, GLint first, GLsizei count) { TRACE(); if(checkImmediateModeInactive(__func__)) { return; } submitVertices(mode, first, count, GL_UNSIGNED_SHORT, NULL); } void APIENTRY glEnableClientState(GLenum cap) { TRACE(); switch(cap) { case GL_VERTEX_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= VERTEX_ENABLED_FLAG; break; case GL_COLOR_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; break; case GL_NORMAL_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= NORMAL_ENABLED_FLAG; break; case GL_TEXTURE_COORD_ARRAY: (ACTIVE_CLIENT_TEXTURE) ? (ENABLED_VERTEX_ATTRIBUTES |= ST_ENABLED_FLAG): (ENABLED_VERTEX_ATTRIBUTES |= UV_ENABLED_FLAG); break; default: _glKosThrowError(GL_INVALID_ENUM, "glEnableClientState"); } } void APIENTRY glDisableClientState(GLenum cap) { TRACE(); switch(cap) { case GL_VERTEX_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~VERTEX_ENABLED_FLAG; break; case GL_COLOR_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~DIFFUSE_ENABLED_FLAG; break; case GL_NORMAL_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~NORMAL_ENABLED_FLAG; break; case GL_TEXTURE_COORD_ARRAY: (ACTIVE_CLIENT_TEXTURE) ? (ENABLED_VERTEX_ATTRIBUTES &= ~ST_ENABLED_FLAG): (ENABLED_VERTEX_ATTRIBUTES &= ~UV_ENABLED_FLAG); break; default: _glKosThrowError(GL_INVALID_ENUM, "glDisableClientState"); } } void APIENTRY glClientActiveTextureARB(GLenum texture) { TRACE(); if(texture < GL_TEXTURE0_ARB || texture > GL_TEXTURE0_ARB + MAX_TEXTURE_UNITS) { _glKosThrowError(GL_INVALID_ENUM, "glClientActiveTextureARB"); } if(_glKosHasError()) { _glKosPrintError(); return; } ACTIVE_CLIENT_TEXTURE = (texture == GL_TEXTURE1_ARB) ? 1 : 0; } void APIENTRY glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); AttribPointer* tointer = (ACTIVE_CLIENT_TEXTURE == 0) ? &UV_POINTER : &ST_POINTER; tointer->ptr = pointer; tointer->stride = stride; tointer->type = type; tointer->size = size; } void APIENTRY glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); VERTEX_POINTER.ptr = pointer; VERTEX_POINTER.stride = stride; VERTEX_POINTER.type = type; VERTEX_POINTER.size = size; } void APIENTRY glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); DIFFUSE_POINTER.ptr = pointer; DIFFUSE_POINTER.stride = stride; DIFFUSE_POINTER.type = type; DIFFUSE_POINTER.size = size; } void APIENTRY glNormalPointer(GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); NORMAL_POINTER.ptr = pointer; NORMAL_POINTER.stride = stride; NORMAL_POINTER.type = type; NORMAL_POINTER.size = 3; }