#include #include #include #include #include #include "private.h" #include "platform.h" AttribPointerList ATTRIB_POINTERS; GLuint ENABLED_VERTEX_ATTRIBUTES = 0; GLuint FAST_PATH_ENABLED = GL_FALSE; static GLubyte ACTIVE_CLIENT_TEXTURE = 0; static const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f; extern inline GLuint _glRecalcFastPath(); extern GLboolean AUTOSORT_ENABLED; #define ITERATE(count) \ GLuint i = count; \ while(i--) void _glInitAttributePointers() { TRACE(); ATTRIB_POINTERS.vertex.ptr = NULL; ATTRIB_POINTERS.vertex.stride = 0; ATTRIB_POINTERS.vertex.type = GL_FLOAT; ATTRIB_POINTERS.vertex.size = 4; ATTRIB_POINTERS.colour.ptr = NULL; ATTRIB_POINTERS.colour.stride = 0; ATTRIB_POINTERS.colour.type = GL_FLOAT; ATTRIB_POINTERS.colour.size = 4; ATTRIB_POINTERS.uv.ptr = NULL; ATTRIB_POINTERS.uv.stride = 0; ATTRIB_POINTERS.uv.type = GL_FLOAT; ATTRIB_POINTERS.uv.size = 4; ATTRIB_POINTERS.st.ptr = NULL; ATTRIB_POINTERS.st.stride = 0; ATTRIB_POINTERS.st.type = GL_FLOAT; ATTRIB_POINTERS.st.size = 4; ATTRIB_POINTERS.normal.ptr = NULL; ATTRIB_POINTERS.normal.stride = 0; ATTRIB_POINTERS.normal.type = GL_FLOAT; ATTRIB_POINTERS.normal.size = 3; } GL_FORCE_INLINE GLsizei byte_size(GLenum type) { switch(type) { case GL_BYTE: return sizeof(GLbyte); case GL_UNSIGNED_BYTE: return sizeof(GLubyte); case GL_SHORT: return sizeof(GLshort); case GL_UNSIGNED_SHORT: return sizeof(GLushort); case GL_INT: return sizeof(GLint); case GL_UNSIGNED_INT: return sizeof(GLuint); case GL_DOUBLE: return sizeof(GLdouble); case GL_UNSIGNED_INT_2_10_10_10_REV: return sizeof(GLuint); case GL_FLOAT: default: return sizeof(GLfloat); } } typedef void (*FloatParseFunc)(GLfloat* out, const GLubyte* in); typedef void (*ByteParseFunc)(GLubyte* out, const GLubyte* in); typedef void (*PolyBuildFunc)(Vertex* first, Vertex* previous, Vertex* vertex, Vertex* next, const GLsizei i); static void _readVertexData3f3f(const GLubyte* __restrict__ in, GLubyte* __restrict__ out) { vec3cpy(out, in); } // 10:10:10:2REV format static void _readVertexData1i3f(const GLubyte* in, GLubyte* out) { const static float MULTIPLIER = 1.0f / 1023.0f; GLfloat* output = (GLfloat*) out; union { int value; struct { signed int x: 10; signed int y: 10; signed int z: 10; signed int w: 2; } bits; } input; input.value = *((const GLint*) in); output[0] = (2.0f * (float) input.bits.x + 1.0f) * MULTIPLIER; output[1] = (2.0f * (float) input.bits.y + 1.0f) * MULTIPLIER; output[2] = (2.0f * (float) input.bits.z + 1.0f) * MULTIPLIER; } static void _readVertexData3us3f(const GLubyte* in, GLubyte* out) { const GLushort* input = (const GLushort*) in; float* output = (float*) out; output[0] = input[0]; output[1] = input[1]; output[2] = input[2]; } static void _readVertexData3ui3f(const GLubyte* in, GLubyte* out) { const GLuint* input = (const GLuint*) in; float* output = (float*) out; output[0] = input[0]; output[1] = input[1]; output[2] = input[2]; } static void _readVertexData3ub3f(const GLubyte* input, GLubyte* out) { float* output = (float*) out; output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE; output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE; output[2] = input[2] * ONE_OVER_TWO_FIVE_FIVE; } static void _readVertexData2f2f(const GLubyte* in, GLubyte* out) { vec2cpy(out, in); } static void _readVertexData2f3f(const GLubyte* in, GLubyte* out) { const float* input = (const float*) in; float* output = (float*) out; vec2cpy(output, input); output[2] = 0.0f; } static void _readVertexData2ub3f(const GLubyte* input, GLubyte* out) { float* output = (float*) out; output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE; output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE; output[2] = 0.0f; } static void _readVertexData2us3f(const GLubyte* in, GLubyte* out) { const GLushort* input = (const GLushort*) in; float* output = (float*) out; output[0] = input[0]; output[1] = input[1]; output[2] = 0.0f; } static void _readVertexData2us2f(const GLubyte* in, GLubyte* out) { const GLushort* input = (const GLushort*) in; float* output = (float*) out; output[0] = input[0]; output[1] = input[1]; } static void _readVertexData2ui2f(const GLubyte* in, GLubyte* out) { const GLuint* input = (const GLuint*) in; float* output = (float*) out; output[0] = input[0]; output[1] = input[1]; } static void _readVertexData2ub2f(const GLubyte* input, GLubyte* out) { float* output = (float*) out; output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE; output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE; } static void _readVertexData2ui3f(const GLubyte* in, GLubyte* out) { const GLuint* input = (const GLuint*) in; float* output = (float*) out; output[0] = input[0]; output[1] = input[1]; output[2] = 0.0f; } static void _readVertexData4ubARGB(const GLubyte* input, GLubyte* output) { output[R8IDX] = input[0]; output[G8IDX] = input[1]; output[B8IDX] = input[2]; output[A8IDX] = input[3]; } static void _readVertexData4fARGB(const GLubyte* in, GLubyte* output) { const float* input = (const float*) in; output[R8IDX] = (GLubyte) clamp(input[0] * 255.0f, 0, 255); output[G8IDX] = (GLubyte) clamp(input[1] * 255.0f, 0, 255); output[B8IDX] = (GLubyte) clamp(input[2] * 255.0f, 0, 255); output[A8IDX] = (GLubyte) clamp(input[3] * 255.0f, 0, 255); } static void _readVertexData3fARGB(const GLubyte* in, GLubyte* output) { const float* input = (const float*) in; output[R8IDX] = (GLubyte) clamp(input[0] * 255.0f, 0, 255); output[G8IDX] = (GLubyte) clamp(input[1] * 255.0f, 0, 255); output[B8IDX] = (GLubyte) clamp(input[2] * 255.0f, 0, 255); output[A8IDX] = 1.0f; } static void _readVertexData3ubARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) { output[R8IDX] = input[0]; output[G8IDX] = input[1]; output[B8IDX] = input[2]; output[A8IDX] = 1.0f; } static void _readVertexData4ubRevARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) { argbcpy(output, input); } static void _readVertexData4fRevARGB(const GLubyte* __restrict__ in, GLubyte* __restrict__ output) { const float* input = (const float*) in; output[0] = (GLubyte) clamp(input[0] * 255.0f, 0, 255); output[1] = (GLubyte) clamp(input[1] * 255.0f, 0, 255); output[2] = (GLubyte) clamp(input[2] * 255.0f, 0, 255); output[3] = (GLubyte) clamp(input[3] * 255.0f, 0, 255); } static void _fillWithNegZVE(const GLubyte* __restrict__ input, GLubyte* __restrict__ out) { _GL_UNUSED(input); typedef struct { float x, y, z; } V; const static V NegZ = {0.0f, 0.0f, -1.0f}; *((V*) out) = NegZ; } static void _fillWhiteARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) { _GL_UNUSED(input); *((uint32_t*) output) = ~0; } static void _fillZero2f(const GLubyte* __restrict__ input, GLubyte* __restrict__ out) { _GL_UNUSED(input); memset(out, 0, sizeof(float) * 2); } static void _readVertexData3usARGB(const GLubyte* input, GLubyte* output) { _GL_UNUSED(input); _GL_UNUSED(output); gl_assert(0 && "Not Implemented"); } static void _readVertexData3uiARGB(const GLubyte* input, GLubyte* output) { _GL_UNUSED(input); _GL_UNUSED(output); gl_assert(0 && "Not Implemented"); } static void _readVertexData4usARGB(const GLubyte* input, GLubyte* output) { _GL_UNUSED(input); _GL_UNUSED(output); gl_assert(0 && "Not Implemented"); } static void _readVertexData4uiARGB(const GLubyte* input, GLubyte* output) { _GL_UNUSED(input); _GL_UNUSED(output); gl_assert(0 && "Not Implemented"); } static void _readVertexData4usRevARGB(const GLubyte* input, GLubyte* output) { _GL_UNUSED(input); _GL_UNUSED(output); gl_assert(0 && "Not Implemented"); } static void _readVertexData4uiRevARGB(const GLubyte* input, GLubyte* output) { _GL_UNUSED(input); _GL_UNUSED(output); gl_assert(0 && "Not Implemented"); } GLuint* _glGetEnabledAttributes() { return &ENABLED_VERTEX_ATTRIBUTES; } AttribPointer* _glGetVertexAttribPointer() { return &ATTRIB_POINTERS.vertex; } AttribPointer* _glGetDiffuseAttribPointer() { return &ATTRIB_POINTERS.colour; } AttribPointer* _glGetNormalAttribPointer() { return &ATTRIB_POINTERS.normal; } AttribPointer* _glGetUVAttribPointer() { return &ATTRIB_POINTERS.uv; } AttribPointer* _glGetSTAttribPointer() { return &ATTRIB_POINTERS.st; } typedef GLuint (*IndexParseFunc)(const GLubyte* in); static inline GLuint _parseUByteIndex(const GLubyte* in) { return (GLuint) *in; } static inline GLuint _parseUIntIndex(const GLubyte* in) { return *((GLuint*) in); } static inline GLuint _parseUShortIndex(const GLubyte* in) { return *((GLshort*) in); } GL_FORCE_INLINE IndexParseFunc _calcParseIndexFunc(GLenum type) { switch(type) { case GL_UNSIGNED_BYTE: return &_parseUByteIndex; break; case GL_UNSIGNED_INT: return &_parseUIntIndex; break; case GL_UNSIGNED_SHORT: default: break; } return &_parseUShortIndex; } /* There was a bug in this macro that shipped with Kos * which has now been fixed. But just in case... */ #undef mat_trans_single3_nodiv #define mat_trans_single3_nodiv(x, y, z) { \ register float __x __asm__("fr12") = (x); \ register float __y __asm__("fr13") = (y); \ register float __z __asm__("fr14") = (z); \ __asm__ __volatile__( \ "fldi1 fr15\n" \ "ftrv xmtrx, fv12\n" \ : "=f" (__x), "=f" (__y), "=f" (__z) \ : "0" (__x), "1" (__y), "2" (__z) \ : "fr15"); \ x = __x; y = __y; z = __z; \ } /* FIXME: Is this right? Shouldn't it be fr12->15? */ #undef mat_trans_normal3 #define mat_trans_normal3(x, y, z) { \ register float __x __asm__("fr8") = (x); \ register float __y __asm__("fr9") = (y); \ register float __z __asm__("fr10") = (z); \ __asm__ __volatile__( \ "fldi0 fr11\n" \ "ftrv xmtrx, fv8\n" \ : "=f" (__x), "=f" (__y), "=f" (__z) \ : "0" (__x), "1" (__y), "2" (__z) \ : "fr11"); \ x = __x; y = __y; z = __z; \ } GL_FORCE_INLINE void transformToEyeSpace(GLfloat* point) { _glMatrixLoadModelView(); mat_trans_single3_nodiv(point[0], point[1], point[2]); } GL_FORCE_INLINE void transformNormalToEyeSpace(GLfloat* normal) { _glMatrixLoadNormal(); mat_trans_normal3(normal[0], normal[1], normal[2]); } GL_FORCE_INLINE PolyHeader *_glSubmissionTargetHeader(SubmissionTarget* target) { gl_assert(target->header_offset < target->output->vector.size); return aligned_vector_at(&target->output->vector, target->header_offset); } GL_INLINE_DEBUG Vertex* _glSubmissionTargetStart(SubmissionTarget* target) { gl_assert(target->start_offset < target->output->vector.size); return aligned_vector_at(&target->output->vector, target->start_offset); } Vertex* _glSubmissionTargetEnd(SubmissionTarget* target) { return _glSubmissionTargetStart(target) + target->count; } GL_FORCE_INLINE void genTriangles(Vertex* output, GLuint count) { Vertex* it = output + 2; GLuint i; for(i = 0; i < count; i += 3) { it->flags = GPU_CMD_VERTEX_EOL; it += 3; } } GL_FORCE_INLINE void genQuads(Vertex* output, GLuint count) { Vertex* pen = output + 2; Vertex* final = output + 3; GLuint i = count >> 2; while(i--) { PREFETCH(pen + 4); PREFETCH(final + 4); swapVertex(pen, final); final->flags = GPU_CMD_VERTEX_EOL; pen += 4; final += 4; } } GL_FORCE_INLINE void genTriangleStrip(Vertex* output, GLuint count) { output[count - 1].flags = GPU_CMD_VERTEX_EOL; } static void genTriangleFan(Vertex* output, GLuint count) { gl_assert(count <= 255); Vertex* dst = output + (((count - 2) * 3) - 1); Vertex* src = output + (count - 1); GLubyte i = count - 2; while(i--) { *dst = *src--; (*dst--).flags = GPU_CMD_VERTEX_EOL; *dst-- = *src; *dst-- = *output; } } typedef void (*ReadPositionFunc)(const GLubyte*, GLubyte*); typedef void (*ReadDiffuseFunc)(const GLubyte*, GLubyte*); typedef void (*ReadUVFunc)(const GLubyte*, GLubyte*); typedef void (*ReadNormalFunc)(const GLubyte*, GLubyte*); ReadPositionFunc calcReadDiffuseFunc() { if((ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) != DIFFUSE_ENABLED_FLAG) { /* Just fill the whole thing white if the attribute is disabled */ return _fillWhiteARGB; } switch(ATTRIB_POINTERS.colour.type) { default: case GL_DOUBLE: case GL_FLOAT: return (ATTRIB_POINTERS.colour.size == 3) ? _readVertexData3fARGB: (ATTRIB_POINTERS.colour.size == 4) ? _readVertexData4fARGB: _readVertexData4fRevARGB; case GL_BYTE: case GL_UNSIGNED_BYTE: return (ATTRIB_POINTERS.colour.size == 3) ? _readVertexData3ubARGB: (ATTRIB_POINTERS.colour.size == 4) ? _readVertexData4ubARGB: _readVertexData4ubRevARGB; case GL_SHORT: case GL_UNSIGNED_SHORT: return (ATTRIB_POINTERS.colour.size == 3) ? _readVertexData3usARGB: (ATTRIB_POINTERS.colour.size == 4) ? _readVertexData4usARGB: _readVertexData4usRevARGB; case GL_INT: case GL_UNSIGNED_INT: return (ATTRIB_POINTERS.colour.size == 3) ? _readVertexData3uiARGB: (ATTRIB_POINTERS.colour.size == 4) ? _readVertexData4uiARGB: _readVertexData4uiRevARGB; } } ReadPositionFunc calcReadPositionFunc() { switch(ATTRIB_POINTERS.vertex.type) { default: case GL_DOUBLE: case GL_FLOAT: return (ATTRIB_POINTERS.vertex.size == 3) ? _readVertexData3f3f: _readVertexData2f3f; case GL_BYTE: case GL_UNSIGNED_BYTE: return (ATTRIB_POINTERS.vertex.size == 3) ? _readVertexData3ub3f: _readVertexData2ub3f; case GL_SHORT: case GL_UNSIGNED_SHORT: return (ATTRIB_POINTERS.vertex.size == 3) ? _readVertexData3us3f: _readVertexData2us3f; case GL_INT: case GL_UNSIGNED_INT: return (ATTRIB_POINTERS.vertex.size == 3) ? _readVertexData3ui3f: _readVertexData2ui3f; } } ReadUVFunc calcReadUVFunc() { if((ENABLED_VERTEX_ATTRIBUTES & UV_ENABLED_FLAG) != UV_ENABLED_FLAG) { return _fillZero2f; } switch(ATTRIB_POINTERS.uv.type) { default: case GL_DOUBLE: case GL_FLOAT: return _readVertexData2f2f; case GL_BYTE: case GL_UNSIGNED_BYTE: return _readVertexData2ub2f; case GL_SHORT: case GL_UNSIGNED_SHORT: return _readVertexData2us2f; case GL_INT: case GL_UNSIGNED_INT: return _readVertexData2ui2f; } } ReadUVFunc calcReadSTFunc() { if((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG) { return _fillZero2f; } switch(ATTRIB_POINTERS.st.type) { default: case GL_DOUBLE: case GL_FLOAT: return _readVertexData2f2f; case GL_BYTE: case GL_UNSIGNED_BYTE: return _readVertexData2ub2f; case GL_SHORT: case GL_UNSIGNED_SHORT: return _readVertexData2us2f; case GL_INT: case GL_UNSIGNED_INT: return _readVertexData2ui2f; } } ReadNormalFunc calcReadNormalFunc() { if((ENABLED_VERTEX_ATTRIBUTES & NORMAL_ENABLED_FLAG) != NORMAL_ENABLED_FLAG) { return _fillWithNegZVE; } switch(ATTRIB_POINTERS.normal.type) { default: case GL_DOUBLE: case GL_FLOAT: return _readVertexData3f3f; break; case GL_BYTE: case GL_UNSIGNED_BYTE: return _readVertexData3ub3f; break; case GL_SHORT: case GL_UNSIGNED_SHORT: return _readVertexData3us3f; break; case GL_INT: case GL_UNSIGNED_INT: return _readVertexData3ui3f; break; case GL_UNSIGNED_INT_2_10_10_10_REV: return _readVertexData1i3f; break; } } static void _readPositionData(ReadDiffuseFunc func, const GLuint first, const GLuint count, Vertex* it) { const GLsizei vstride = ATTRIB_POINTERS.vertex.stride; const GLubyte* vptr = ((GLubyte*) ATTRIB_POINTERS.vertex.ptr + (first * vstride)); float pos[3]; float w = 0.0f; ITERATE(count) { PREFETCH(vptr + vstride); func(vptr, (GLubyte*) pos); it->flags = GPU_CMD_VERTEX; vptr += vstride; ++it; } } static void _readUVData(ReadUVFunc func, const GLuint first, const GLuint count, Vertex* it) { const GLsizei uvstride = ATTRIB_POINTERS.uv.stride; const GLubyte* uvptr = ((GLubyte*) ATTRIB_POINTERS.uv.ptr + (first * uvstride)); ITERATE(count) { PREFETCH(uvptr + uvstride); func(uvptr, (GLubyte*) it->uv); uvptr += uvstride; ++it; } } static void _readSTData(ReadUVFunc func, const GLuint first, const GLuint count, VertexExtra* it) { const GLsizei ststride = ATTRIB_POINTERS.st.stride; const GLubyte* stptr = ((GLubyte*) ATTRIB_POINTERS.st.ptr + (first * ststride)); ITERATE(count) { PREFETCH(stptr + ststride); func(stptr, (GLubyte*) it->st); stptr += ststride; ++it; } } static void _readNormalData(ReadNormalFunc func, const GLuint first, const GLuint count, VertexExtra* it) { const GLsizei nstride = ATTRIB_POINTERS.normal.stride; const GLubyte* nptr = ((GLubyte*) ATTRIB_POINTERS.normal.ptr + (first * nstride)); ITERATE(count) { func(nptr, (GLubyte*) it->nxyz); nptr += nstride; if(_glIsNormalizeEnabled()) { GLfloat* n = (GLfloat*) it->nxyz; float temp = n[0] * n[0]; temp = MATH_fmac(n[1], n[1], temp); temp = MATH_fmac(n[2], n[2], temp); float ilength = MATH_fsrra(temp); n[0] *= ilength; n[1] *= ilength; n[2] *= ilength; } ++it; } } GL_FORCE_INLINE GLuint diffusePointerSize() { return (ATTRIB_POINTERS.colour.size == GL_BGRA) ? 4 : ATTRIB_POINTERS.colour.size; } static void _readDiffuseData(ReadDiffuseFunc func, const GLuint first, const GLuint count, Vertex* it) { const GLuint cstride = ATTRIB_POINTERS.colour.stride; const GLubyte* cptr = ((GLubyte*) ATTRIB_POINTERS.colour.ptr) + (first * cstride); ITERATE(count) { PREFETCH(cptr + cstride); func(cptr, it->bgra); cptr += cstride; ++it; } } static void generateElements( SubmissionTarget* target, const GLsizei first, const GLuint count, const GLubyte* indices, const GLenum type) { const GLsizei istride = byte_size(type); const IndexParseFunc IndexFunc = _calcParseIndexFunc(type); GLubyte* xyz; GLubyte* uv; GLubyte* bgra; GLubyte* st; GLubyte* nxyz; Vertex* output = _glSubmissionTargetStart(target); VertexExtra* ve = aligned_vector_at(target->extras, 0); uint32_t i = first; uint32_t idx = 0; const ReadPositionFunc pos_func = calcReadPositionFunc(); const GLsizei vstride = ATTRIB_POINTERS.vertex.stride; const ReadUVFunc uv_func = calcReadUVFunc(); const GLuint uvstride = ATTRIB_POINTERS.uv.stride; const ReadUVFunc st_func = calcReadSTFunc(); const GLuint ststride = ATTRIB_POINTERS.st.stride; const ReadDiffuseFunc diffuse_func = calcReadDiffuseFunc(); const GLuint dstride = ATTRIB_POINTERS.colour.stride; const ReadNormalFunc normal_func = calcReadNormalFunc(); const GLuint nstride = ATTRIB_POINTERS.normal.stride; for(; i < first + count; ++i) { idx = IndexFunc(indices + (i * istride)); xyz = (GLubyte*) ATTRIB_POINTERS.vertex.ptr + (idx * vstride); uv = (GLubyte*) ATTRIB_POINTERS.uv.ptr + (idx * uvstride); bgra = (GLubyte*) ATTRIB_POINTERS.colour.ptr + (idx * dstride); st = (GLubyte*) ATTRIB_POINTERS.st.ptr + (idx * ststride); nxyz = (GLubyte*) ATTRIB_POINTERS.normal.ptr + (idx * nstride); pos_func(xyz, (GLubyte*) output->xyz); uv_func(uv, (GLubyte*) output->uv); diffuse_func(bgra, output->bgra); st_func(st, (GLubyte*) ve->st); normal_func(nxyz, (GLubyte*) ve->nxyz); output->flags = GPU_CMD_VERTEX; ++output; ++ve; } } typedef struct { float x, y, z; } Float3; typedef struct { float u, v; } Float2; static const Float3 F3Z = {0.0f, 0.0f, 1.0f}; static const Float3 F3ZERO = {0.0f, 0.0f, 0.0f}; static const Float2 F2ZERO = {0.0f, 0.0f}; static const uint32_t U4ONE = ~0; static void generateElementsFastPath( SubmissionTarget* target, const GLsizei first, const GLuint count, const GLubyte* indices, const GLenum type) { Vertex* start = _glSubmissionTargetStart(target); const GLuint vstride = ATTRIB_POINTERS.vertex.stride; const GLuint uvstride = ATTRIB_POINTERS.uv.stride; const GLuint ststride = ATTRIB_POINTERS.st.stride; const GLuint dstride = ATTRIB_POINTERS.colour.stride; const GLuint nstride = ATTRIB_POINTERS.normal.stride; const GLsizei istride = byte_size(type); const IndexParseFunc IndexFunc = _calcParseIndexFunc(type); /* Copy the pos, uv and color directly in one go */ const GLubyte* pos = (ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG) ? ATTRIB_POINTERS.vertex.ptr : NULL; const GLubyte* uv = (ENABLED_VERTEX_ATTRIBUTES & UV_ENABLED_FLAG) ? ATTRIB_POINTERS.uv.ptr : NULL; const GLubyte* col = (ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) ? ATTRIB_POINTERS.colour.ptr : NULL; const GLubyte* st = (ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) ? ATTRIB_POINTERS.st.ptr : NULL; const GLubyte* n = (ENABLED_VERTEX_ATTRIBUTES & NORMAL_ENABLED_FLAG) ? ATTRIB_POINTERS.normal.ptr : NULL; VertexExtra* ve = aligned_vector_at(target->extras, 0); Vertex* it = start; const float w = 1.0f; if(!pos) { return; } for(GLuint i = first; i < first + count; ++i) { GLuint idx = IndexFunc(indices + (i * istride)); it->flags = GPU_CMD_VERTEX; pos = (GLubyte*) ATTRIB_POINTERS.vertex.ptr + (idx * vstride); TransformVertex((const float*) pos, &w, it->xyz, &it->w); if(uv) { uv = (GLubyte*) ATTRIB_POINTERS.uv.ptr + (idx * uvstride); MEMCPY4(it->uv, uv, sizeof(float) * 2); } else { *((Float2*) it->uv) = F2ZERO; } if(col) { col = (GLubyte*) ATTRIB_POINTERS.colour.ptr + (idx * dstride); MEMCPY4(it->bgra, col, sizeof(uint32_t)); } else { *((uint32_t*) it->bgra) = ~0; } if(st) { st = (GLubyte*) ATTRIB_POINTERS.st.ptr + (idx * ststride); MEMCPY4(ve->st, st, sizeof(float) * 2); } else { *((Float2*) ve->st) = F2ZERO; } if(n) { n = (GLubyte*) ATTRIB_POINTERS.normal.ptr + (idx * nstride); MEMCPY4(ve->nxyz, n, sizeof(float) * 3); } else { *((Float3*) ve->nxyz) = F3Z; } it++; ve++; } } #define likely(x) __builtin_expect(!!(x), 1) #define POLYMODE ALL #define PROCESS_VERTEX_FLAGS(it, i) { \ (it)->flags = GPU_CMD_VERTEX; \ } #include "draw_fastpath.inc" #undef PROCESS_VERTEX_FLAGS #undef POLYMODE #define POLYMODE QUADS #define PROCESS_VERTEX_FLAGS(it, i) { \ if((i + 1) % 4 == 0) { \ Vertex* prev = ((it) - 1); \ Vertex t = (*prev); \ *(prev) = *((it)); \ *((it)) = t; \ prev->flags = GPU_CMD_VERTEX; \ it->flags = GPU_CMD_VERTEX_EOL; \ } else { \ it->flags = GPU_CMD_VERTEX; \ } \ } #include "draw_fastpath.inc" #undef PROCESS_VERTEX_FLAGS #undef POLYMODE #define POLYMODE TRIS #define PROCESS_VERTEX_FLAGS(it, i) { \ it->flags = ((i + 1) % 3 == 0) ? GPU_CMD_VERTEX_EOL : GPU_CMD_VERTEX; \ } #include "draw_fastpath.inc" #undef PROCESS_VERTEX_FLAGS #undef POLYMODE static void generateArrays(SubmissionTarget* target, const GLsizei first, const GLuint count) { Vertex* start = _glSubmissionTargetStart(target); VertexExtra* ve = aligned_vector_at(target->extras, 0); const ReadPositionFunc pfunc = calcReadPositionFunc(); const ReadDiffuseFunc dfunc = calcReadDiffuseFunc(); const ReadUVFunc uvfunc = calcReadUVFunc(); const ReadNormalFunc nfunc = calcReadNormalFunc(); const ReadUVFunc stfunc = calcReadSTFunc(); _readPositionData(pfunc, first, count, start); _readDiffuseData(dfunc, first, count, start); _readUVData(uvfunc, first, count, start); _readNormalData(nfunc, first, count, ve); _readSTData(stfunc, first, count, ve); } static void generate(SubmissionTarget* target, const GLenum mode, const GLsizei first, const GLuint count, const GLubyte* indices, const GLenum type) { /* Read from the client buffers and generate an array of ClipVertices */ TRACE(); if(FAST_PATH_ENABLED) { if(indices) { generateElementsFastPath(target, first, count, indices, type); } else { switch(mode) { case GL_QUADS: generateArraysFastPath_QUADS(target, first, count); return; // Don't need to do any more processing case GL_TRIANGLES: generateArraysFastPath_TRIS(target, first, count); return; // Don't need to do any more processing default: generateArraysFastPath_ALL(target, first, count); } } } else { if(indices) { generateElements(target, first, count, indices, type); } else { generateArrays(target, first, count); } } Vertex* it = _glSubmissionTargetStart(target); // Drawing arrays switch(mode) { case GL_TRIANGLES: genTriangles(it, count); break; case GL_QUADS: genQuads(it, count); break; case GL_TRIANGLE_FAN: genTriangleFan(it, count); break; case GL_TRIANGLE_STRIP: genTriangleStrip(it, count); break; default: gl_assert(0 && "Not Implemented"); } } static void transform(SubmissionTarget* target) { TRACE(); /* Perform modelview transform, storing W */ Vertex* vertex = _glSubmissionTargetStart(target); TransformVertices(vertex, target->count); } static void mat_transform3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t inStride, const uint32_t outStride) { const uint8_t* dataIn = (const uint8_t*) xyz; uint8_t* dataOut = (uint8_t*) xyzOut; ITERATE(count) { const float* in = (const float*) dataIn; float* out = (float*) dataOut; TransformVec3NoMod( in, out ); dataIn += inStride; dataOut += outStride; } } static void mat_transform_normal3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t inStride, const uint32_t outStride) { const uint8_t* dataIn = (const uint8_t*) xyz; uint8_t* dataOut = (uint8_t*) xyzOut; ITERATE(count) { const float* in = (const float*) dataIn; float* out = (float*) dataOut; TransformNormalNoMod(in, out); dataIn += inStride; dataOut += outStride; } } static void light(SubmissionTarget* target) { static AlignedVector* eye_space_data = NULL; if(!eye_space_data) { eye_space_data = (AlignedVector*) malloc(sizeof(AlignedVector)); aligned_vector_init(eye_space_data, sizeof(EyeSpaceData)); } aligned_vector_resize(eye_space_data, target->count); /* Perform lighting calculations and manipulate the colour */ Vertex* vertex = _glSubmissionTargetStart(target); VertexExtra* extra = aligned_vector_at(target->extras, 0); EyeSpaceData* eye_space = (EyeSpaceData*) eye_space_data->data; _glMatrixLoadNormal(); mat_transform_normal3(extra->nxyz, eye_space->n, target->count, sizeof(VertexExtra), sizeof(EyeSpaceData)); EyeSpaceData* ES = aligned_vector_at(eye_space_data, 0); _glPerformLighting(vertex, ES, target->count); } GL_FORCE_INLINE void divide(SubmissionTarget* target) { TRACE(); /* Perform perspective divide on each vertex */ Vertex* vertex = _glSubmissionTargetStart(target); const float h = GetVideoMode()->height; ITERATE(target->count) { const float f = MATH_Fast_Invert(vertex->w); /* Convert to NDC and apply viewport */ vertex->xyz[0] = MATH_fmac( VIEWPORT.hwidth, vertex->xyz[0] * f, VIEWPORT.x_plus_hwidth ); vertex->xyz[1] = h - MATH_fmac( VIEWPORT.hheight, vertex->xyz[1] * f, VIEWPORT.y_plus_hheight ); /* Apply depth range */ vertex->xyz[2] = MAX( 1.0f - MATH_fmac(vertex->xyz[2] * f, 0.5f, 0.5f), PVR_MIN_Z ); ++vertex; } } GL_FORCE_INLINE int _calc_pvr_face_culling() { if(!_glIsCullingEnabled()) { return GPU_CULLING_SMALL; } else { if(_glGetCullFace() == GL_BACK) { return (_glGetFrontFace() == GL_CW) ? GPU_CULLING_CCW : GPU_CULLING_CW; } else { return (_glGetFrontFace() == GL_CCW) ? GPU_CULLING_CCW : GPU_CULLING_CW; } } } GL_FORCE_INLINE int _calc_pvr_depth_test() { if(!_glIsDepthTestEnabled()) { return GPU_DEPTHCMP_ALWAYS; } switch(_glGetDepthFunc()) { case GL_NEVER: return GPU_DEPTHCMP_NEVER; case GL_LESS: return GPU_DEPTHCMP_GREATER; case GL_EQUAL: return GPU_DEPTHCMP_EQUAL; case GL_LEQUAL: return GPU_DEPTHCMP_GEQUAL; case GL_GREATER: return GPU_DEPTHCMP_LESS; case GL_NOTEQUAL: return GPU_DEPTHCMP_NOTEQUAL; case GL_GEQUAL: return GPU_DEPTHCMP_LEQUAL; break; case GL_ALWAYS: default: return GPU_DEPTHCMP_ALWAYS; } } GL_FORCE_INLINE int _calcPVRBlendFactor(GLenum factor) { switch(factor) { case GL_ZERO: return GPU_BLEND_ZERO; case GL_SRC_ALPHA: return GPU_BLEND_SRCALPHA; case GL_DST_COLOR: return GPU_BLEND_DESTCOLOR; case GL_DST_ALPHA: return GPU_BLEND_DESTALPHA; case GL_ONE_MINUS_DST_COLOR: return GPU_BLEND_INVDESTCOLOR; case GL_ONE_MINUS_SRC_ALPHA: return GPU_BLEND_INVSRCALPHA; case GL_ONE_MINUS_DST_ALPHA: return GPU_BLEND_INVDESTALPHA; case GL_ONE: return GPU_BLEND_ONE; default: fprintf(stderr, "Invalid blend mode: %u\n", (unsigned int) factor); return GPU_BLEND_ONE; } } GL_FORCE_INLINE void _updatePVRBlend(PolyContext* context) { if(_glIsBlendingEnabled() || _glIsAlphaTestEnabled()) { context->gen.alpha = GPU_ALPHA_ENABLE; } else { context->gen.alpha = GPU_ALPHA_DISABLE; } context->blend.src = _calcPVRBlendFactor(_glGetBlendSourceFactor()); context->blend.dst = _calcPVRBlendFactor(_glGetBlendDestFactor()); } GL_FORCE_INLINE void apply_poly_header(PolyHeader* header, GLboolean multiTextureHeader, PolyList* activePolyList, GLshort textureUnit) { TRACE(); // Compile the header PolyContext ctx; memset(&ctx, 0, sizeof(PolyContext)); ctx.list_type = activePolyList->list_type; ctx.fmt.color = GPU_CLRFMT_ARGBPACKED; ctx.fmt.uv = GPU_UVFMT_32BIT; ctx.gen.color_clamp = GPU_CLRCLAMP_DISABLE; ctx.gen.culling = _calc_pvr_face_culling(); ctx.depth.comparison = _calc_pvr_depth_test(); ctx.depth.write = _glIsDepthWriteEnabled() ? GPU_DEPTHWRITE_ENABLE : GPU_DEPTHWRITE_DISABLE; ctx.gen.shading = (_glGetShadeModel() == GL_SMOOTH) ? GPU_SHADE_GOURAUD : GPU_SHADE_FLAT; if(_glIsScissorTestEnabled()) { ctx.gen.clip_mode = GPU_USERCLIP_INSIDE; } else { ctx.gen.clip_mode = GPU_USERCLIP_DISABLE; } if(_glIsFogEnabled()) { ctx.gen.fog_type = GPU_FOG_TABLE; } else { ctx.gen.fog_type = GPU_FOG_DISABLE; } _updatePVRBlend(&ctx); if(ctx.list_type == GPU_LIST_OP_POLY) { /* Opaque polys are always one/zero */ ctx.blend.src = GPU_BLEND_ONE; ctx.blend.dst = GPU_BLEND_ZERO; } else if(ctx.list_type == GPU_LIST_PT_POLY) { /* Punch-through polys require fixed blending and depth modes */ ctx.blend.src = GPU_BLEND_SRCALPHA; ctx.blend.dst = GPU_BLEND_INVSRCALPHA; ctx.depth.comparison = GPU_DEPTHCMP_LEQUAL; } else if(ctx.list_type == GPU_LIST_TR_POLY && AUTOSORT_ENABLED) { /* Autosort mode requires this mode for transparent polys */ ctx.depth.comparison = GPU_DEPTHCMP_GEQUAL; } _glUpdatePVRTextureContext(&ctx, textureUnit); if(multiTextureHeader) { gl_assert(ctx.list_type == GPU_LIST_TR_POLY); ctx.gen.alpha = GPU_ALPHA_ENABLE; ctx.txr.alpha = GPU_TXRALPHA_ENABLE; ctx.blend.src = GPU_BLEND_ZERO; ctx.blend.dst = GPU_BLEND_DESTCOLOR; ctx.depth.comparison = GPU_DEPTHCMP_EQUAL; } CompilePolyHeader(header, &ctx); /* Force bits 18 and 19 on to switch to 6 triangle strips */ header->cmd |= 0xC0000; /* Post-process the vertex list */ /* * This is currently unnecessary. aligned_vector memsets the allocated objects * to zero, and we don't touch oargb, also, we don't *enable* oargb yet in the * pvr header so it should be ignored anyway. If this ever becomes a problem, * uncomment this. ClipVertex* vout = output; const ClipVertex* end = output + count; while(vout < end) { vout->oargb = 0; } */ } #define DEBUG_CLIPPING 0 static AlignedVector VERTEX_EXTRAS; static SubmissionTarget SUBMISSION_TARGET; void _glInitSubmissionTarget() { SubmissionTarget* target = &SUBMISSION_TARGET; target->extras = NULL; target->count = 0; target->output = NULL; target->header_offset = target->start_offset = 0; aligned_vector_init(&VERTEX_EXTRAS, sizeof(VertexExtra)); target->extras = &VERTEX_EXTRAS; } GL_FORCE_INLINE void submitVertices(GLenum mode, GLsizei first, GLuint count, GLenum type, const GLvoid* indices) { SubmissionTarget* const target = &SUBMISSION_TARGET; AlignedVector* const extras = target->extras; TRACE(); /* Do nothing if vertices aren't enabled */ if(!(ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG)) { return; } /* No vertices? Do nothing */ if(!count) { return; } /* Polygons are treated as triangle fans, the only time this would be a * problem is if we supported glPolygonMode(..., GL_LINE) but we don't. * We optimise the triangle and quad cases. */ if(mode == GL_POLYGON) { switch(count) { case 2: mode = GL_LINES; break; case 3: mode = GL_TRIANGLES; break; case 4: mode = GL_QUADS; break; default: mode = GL_TRIANGLE_FAN; } } if(mode == GL_LINE_STRIP || mode == GL_LINES) { fprintf(stderr, "Line drawing is currently unsupported\n"); return; } GLboolean header_required = (target->output->vector.size == 0) || _glGPUStateIsDirty(); // We don't handle this any further, so just make sure we never pass it down */ gl_assert(mode != GL_POLYGON); target->output = _glActivePolyList(); target->count = (mode == GL_TRIANGLE_FAN) ? ((count - 2) * 3) : count; target->header_offset = target->output->vector.size; target->start_offset = target->header_offset + (header_required); gl_assert(target->count); /* Make sure we have enough room for all the "extra" data */ aligned_vector_resize(extras, target->count); /* Make room for the vertices and header */ aligned_vector_extend(&target->output->vector, target->count + (header_required)); if(header_required) { apply_poly_header(_glSubmissionTargetHeader(target), GL_FALSE, target->output, 0); _glGPUStateMarkClean(); } /* If we're lighting, then we need to do some work in * eye-space, so we only transform vertices by the modelview * matrix, and then later multiply by projection. * * If we're not doing lighting though we can optimise by taking * vertices straight to clip-space */ if(_glIsLightingEnabled()) { _glMatrixLoadModelView(); } else { _glMatrixLoadModelViewProjection(); } /* If we're FAST_PATH_ENABLED, then this will do the transform for us */ generate(target, mode, first, count, (GLubyte*) indices, type); /* No fast path, then we have to do another iteration :( */ if(!FAST_PATH_ENABLED) { /* Multiply by modelview */ transform(target); } if(_glIsLightingEnabled()){ light(target); /* OK eye-space work done, now move into clip space */ _glMatrixLoadProjection(); transform(target); } // /* // Now, if multitexturing is enabled, we want to send exactly the same vertices again, except: // - We want to enable blending, and send them to the TR list // - We want to set the depth func to GL_EQUAL // - We want to set the second texture ID // - We want to set the uv coordinates to the passed st ones // */ // if(!TEXTURES_ENABLED[1]) { // /* Multitexture actively disabled */ // return; // } // TextureObject* texture1 = _glGetTexture1(); // /* Multitexture implicitly disabled */ // if(!texture1 || ((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG)) { // /* Multitexture actively disabled */ // return; // } // /* Push back a copy of the list to the transparent poly list, including the header // (hence the + 1) // */ // Vertex* vertex = aligned_vector_push_back( // &_glTransparentPolyList()->vector, (Vertex*) _glSubmissionTargetHeader(target), target->count + 1 // ); // gl_assert(vertex); // PolyHeader* mtHeader = (PolyHeader*) vertex++; // /* Send the buffer again to the transparent list */ // apply_poly_header(mtHeader, GL_TRUE, _glTransparentPolyList(), 1); // /* Replace the UV coordinates with the ST ones */ // VertexExtra* ve = aligned_vector_at(target->extras, 0); // ITERATE(target->count) { // vertex->uv[0] = ve->st[0]; // vertex->uv[1] = ve->st[1]; // ++vertex; // ++ve; // } } void APIENTRY glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid* indices) { TRACE(); if(_glCheckImmediateModeInactive(__func__)) { return; } submitVertices(mode, 0, count, type, indices); } void APIENTRY glDrawArrays(GLenum mode, GLint first, GLsizei count) { TRACE(); if(_glCheckImmediateModeInactive(__func__)) { return; } submitVertices(mode, first, count, GL_UNSIGNED_INT, NULL); } void APIENTRY glEnableClientState(GLenum cap) { TRACE(); switch(cap) { case GL_VERTEX_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= VERTEX_ENABLED_FLAG; break; case GL_COLOR_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; break; case GL_NORMAL_ARRAY: ENABLED_VERTEX_ATTRIBUTES |= NORMAL_ENABLED_FLAG; break; case GL_TEXTURE_COORD_ARRAY: (ACTIVE_CLIENT_TEXTURE) ? (ENABLED_VERTEX_ATTRIBUTES |= ST_ENABLED_FLAG): (ENABLED_VERTEX_ATTRIBUTES |= UV_ENABLED_FLAG); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); } /* It's possible that we called glVertexPointer and friends before * calling glEnableClientState, so we should recheck to make sure * everything is in the right format with this new information */ _glRecalcFastPath(); } void APIENTRY glDisableClientState(GLenum cap) { TRACE(); switch(cap) { case GL_VERTEX_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~VERTEX_ENABLED_FLAG; break; case GL_COLOR_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~DIFFUSE_ENABLED_FLAG; break; case GL_NORMAL_ARRAY: ENABLED_VERTEX_ATTRIBUTES &= ~NORMAL_ENABLED_FLAG; break; case GL_TEXTURE_COORD_ARRAY: (ACTIVE_CLIENT_TEXTURE) ? (ENABLED_VERTEX_ATTRIBUTES &= ~ST_ENABLED_FLAG): (ENABLED_VERTEX_ATTRIBUTES &= ~UV_ENABLED_FLAG); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); } /* State changed, recalculate */ _glRecalcFastPath(); } GLuint _glGetActiveClientTexture() { return ACTIVE_CLIENT_TEXTURE; } void APIENTRY glClientActiveTextureARB(GLenum texture) { TRACE(); if(texture < GL_TEXTURE0_ARB || texture > GL_TEXTURE0_ARB + MAX_GLDC_TEXTURE_UNITS) { _glKosThrowError(GL_INVALID_ENUM, __func__); return; } ACTIVE_CLIENT_TEXTURE = (texture == GL_TEXTURE1_ARB) ? 1 : 0; } GL_FORCE_INLINE GLboolean _glComparePointers(AttribPointer* p, GLint size, GLenum type, GLsizei stride, const GLvoid* pointer) { return (p->size == size && p->type == type && p->stride == stride && p->ptr == pointer); } void APIENTRY glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); if(size < 1 || size > 4) { _glKosThrowError(GL_INVALID_VALUE, __func__); return; } stride = (stride) ? stride : size * byte_size(type); AttribPointer* tointer = (ACTIVE_CLIENT_TEXTURE == 0) ? &ATTRIB_POINTERS.uv : &ATTRIB_POINTERS.st; if(_glComparePointers(tointer, size, type, stride, pointer)) { // No Change return; } tointer->ptr = pointer; tointer->stride = stride; tointer->type = type; tointer->size = size; _glRecalcFastPath(); } void APIENTRY glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); if(size < 2 || size > 4) { _glKosThrowError(GL_INVALID_VALUE, __func__); return; } stride = (stride) ? stride : (size * byte_size(ATTRIB_POINTERS.vertex.type)); if(_glComparePointers(&ATTRIB_POINTERS.vertex, size, type, stride, pointer)) { // No Change return; } ATTRIB_POINTERS.vertex.ptr = pointer; ATTRIB_POINTERS.vertex.stride = stride; ATTRIB_POINTERS.vertex.type = type; ATTRIB_POINTERS.vertex.size = size; _glRecalcFastPath(); } void APIENTRY glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); if(size != 3 && size != 4 && size != GL_BGRA) { _glKosThrowError(GL_INVALID_VALUE, __func__); return; } stride = (stride) ? stride : ((size == GL_BGRA) ? 4 : size) * byte_size(type); if(_glComparePointers(&ATTRIB_POINTERS.colour, size, type, stride, pointer)) { // No Change return; } ATTRIB_POINTERS.colour.ptr = pointer; ATTRIB_POINTERS.colour.type = type; ATTRIB_POINTERS.colour.size = size; ATTRIB_POINTERS.colour.stride = stride; _glRecalcFastPath(); } void APIENTRY glNormalPointer(GLenum type, GLsizei stride, const GLvoid * pointer) { TRACE(); GLint validTypes[] = { GL_DOUBLE, GL_FLOAT, GL_BYTE, GL_UNSIGNED_BYTE, GL_INT, GL_UNSIGNED_INT, GL_UNSIGNED_INT_2_10_10_10_REV, 0 }; if(_glCheckValidEnum(type, validTypes, __func__) != 0) { return; } stride = (stride) ? stride : ATTRIB_POINTERS.normal.size * byte_size(type); if(_glComparePointers(&ATTRIB_POINTERS.normal, 3, type, stride, pointer)) { // No Change return; } ATTRIB_POINTERS.normal.ptr = pointer; ATTRIB_POINTERS.normal.size = (type == GL_UNSIGNED_INT_2_10_10_10_REV) ? 1 : 3; ATTRIB_POINTERS.normal.stride = stride; ATTRIB_POINTERS.normal.type = type; _glRecalcFastPath(); }