#include #include #include #include "alloc.h" /* This allocator is designed so that all allocations larger * than 2k, fall on a 2k boundary. Smaller allocations will * never cross a 2k boundary. * * House keeping is stored in RAM to avoid reading back from the * VRAM to check for usage. Headers can't be easily stored in the * blocks anyway as they have to be 2k aligned (so you'd need to * store them in reverse or something) * * Defragmenting the pool will move allocations less than 2k * first, and then shift any full 2k blocks to the start of the * address space. * * The maximum pool size is 8M, made up of: * * - 4096 blocks of 2k * - each with 8 sub-blocks of 256 bytes * * Why? * * The PVR performs better if textures don't cross 2K memory * addresses, so we try to avoid that. Obviously we can't * if the allocation is > 2k, but in that case we can at least * align with 2k and the VQ codebook (which is usually 2k) will * be in its own page. * * The smallest PVR texture allowed is 8x8 at 16 bit (so 128 bytes) * but we're unlikely to use too many of those, so having a min sub-block * size of 256 should be OK (a 16x16 image is 512, so two sub-blocks). * * We could go down to 128 bytes if wastage is an issue, but then we have * to store double the number of usage markers. * * FIXME: * * - Allocations < 2048 can still cross boundaries */ #include #define EIGHT_MEG (8 * 1024 * 1024) #define TWO_KILOBYTES (2 * 1024) #define BLOCK_COUNT (EIGHT_MEG / TWO_KILOBYTES) static inline int round_up(int n, int multiple) { assert(multiple); return ((n + multiple - 1) / multiple) * multiple; } struct AllocEntry { void* pointer; size_t size; struct AllocEntry* next; }; typedef struct { /* This is a usage bitmask for each block. A block * is divided into 8 x 256 byte subblocks. If a block * is entirely used, it's value will be 255, if * it's entirely free then it will be 0. */ uint8_t block_usage[BLOCK_COUNT]; uint8_t* pool; // Pointer to the memory pool size_t pool_size; // Size of the memory pool uint8_t* base_address; // First 2k aligned address in the pool size_t block_count; // Number of 2k blocks in the pool /* It's frustrating that we need to do this dynamically * but we need to know the size allocated when we free()... * we could store it statically but it would take 64k if we had * an array of block_index -> block size where there would be 2 ** 32 * entries of 16 bit block sizes. The drawback (aside the memory usage) * would be that we won't be able to order by size, so defragging will * take much more time.*/ struct AllocEntry* allocations; } PoolHeader; static PoolHeader pool_header = { {0}, NULL, 0, NULL, 0, NULL }; void* alloc_base_address(void* pool) { (void) pool; return pool_header.base_address; } size_t alloc_block_count(void* pool) { (void) pool; return pool_header.block_count; } void* alloc_next_available(void* pool, size_t required_size) { uint8_t* it = pool_header.block_usage; uint32_t required_subblocks = (required_size / 256); if(required_size % 256) required_subblocks += 1; uint8_t* end = pool_header.block_usage + pool_header.block_count; while(it < end) { // Skip full blocks while((*it) == 255) { ++it; if(it >= pool_header.block_usage + sizeof(pool_header.block_usage)) { return NULL; } continue; } uint32_t found_subblocks = 0; /* Anything gte to 2048 must be aligned to a 2048 boundary */ bool requires_alignment = required_size >= 2048; /* We just need to find enough consecutive blocks */ while(found_subblocks < required_subblocks) { uint8_t t = *it; /* Optimisation only. Skip over full blocks */ if(t == 255) { ++it; found_subblocks = 0; if(it >= end) { return NULL; } continue; } /* Now let's see how many consecutive blocks we can find */ for(int i = 0; i < 8; ++i) { if((t & 0x80) == 0) { if(requires_alignment && found_subblocks == 0 && i != 0) { // Ignore this subblock, because we want the first subblock to be aligned // at a 2048 boundary and this one isn't (i != 0) found_subblocks = 0; } else { found_subblocks++; if(found_subblocks >= required_subblocks) { /* We found space! Now calculate the address */ uintptr_t offset = (it - pool_header.block_usage) * 8; offset += (i + 1); offset -= required_subblocks; return pool_header.base_address + (offset * 256); } } } else { found_subblocks = 0; } t <<= 1; } ++it; if(it >= end) { return NULL; } } } return NULL; } int alloc_init(void* pool, size_t size) { (void) pool; if(pool_header.pool) { return -1; } if(size > EIGHT_MEG) { // FIXME: >= ? return -1; } uint8_t* p = (uint8_t*) pool; memset(pool_header.block_usage, 0, sizeof(pool_header.block_usage)); pool_header.pool = pool; pool_header.pool_size = size; pool_header.base_address = (uint8_t*) round_up((uintptr_t) pool_header.pool, 2048); pool_header.block_count = ((p + size) - pool_header.base_address) / 2048; pool_header.allocations = NULL; assert(((uintptr_t) pool_header.base_address) % 2048 == 0); return 0; } void alloc_shutdown(void* pool) { (void) pool; struct AllocEntry* it = pool_header.allocations; while(it) { struct AllocEntry* next = it->next; free(it); it = next; } memset(&pool_header, 0, sizeof(pool_header)); } static inline uint32_t size_to_subblock_count(size_t size) { uint32_t required_subblocks = (size / 256); if(size % 256) required_subblocks += 1; return required_subblocks; } static inline uint32_t subblock_from_pointer(void* p) { uint8_t* ptr = (uint8_t*) p; return (ptr - pool_header.base_address) / 256; } void* alloc_malloc(void* pool, size_t size) { void* ret = alloc_next_available(pool, size); if(size >= 2048) { assert(((uintptr_t) ret) % 2048 == 0); } if(ret) { uintptr_t start_subblock = subblock_from_pointer(ret); uint32_t required_subblocks = size_to_subblock_count(size); size_t offset = start_subblock % 8; size_t block = start_subblock / 8; uint8_t mask = 0; /* Toggle any bits for the first block */ for(int i = offset - 1; i >= 0; --i) { mask |= (1 << i); required_subblocks--; } if(mask) { pool_header.block_usage[block++] |= mask; } /* Fill any full blocks in the middle of the allocation */ while(required_subblocks > 8) { pool_header.block_usage[block++] = 255; required_subblocks -= 8; } /* Fill out any trailing subblocks */ mask = 0; for(size_t i = 0; i < required_subblocks; ++i) { mask |= (1 << (7 - i)); } if(mask) { pool_header.block_usage[block++] |= mask; } /* Insert allocations in the list by size descending so that when we * defrag we can move the larger blocks before the smaller ones without * much effort */ struct AllocEntry* new_entry = (struct AllocEntry*) malloc(sizeof(struct AllocEntry)); new_entry->pointer = ret; new_entry->size = size; new_entry->next = NULL; struct AllocEntry* it = pool_header.allocations; struct AllocEntry* last = NULL; if(!it) { pool_header.allocations = new_entry; } else { while(it) { if(it->size < size) { if(last) { last->next = new_entry; } else { pool_header.allocations = new_entry; } new_entry->next = it; break; } else if(!it->next) { it->next = new_entry; new_entry->next = NULL; break; } last = it; it = it->next; } } } return ret; } void alloc_free(void* pool, void* p) { struct AllocEntry* it = pool_header.allocations; struct AllocEntry* last = NULL; while(it) { if(it->pointer == p) { size_t used_subblocks = size_to_subblock_count(it->size); size_t subblock = subblock_from_pointer(p); size_t block = subblock / 8; size_t offset = subblock % 8; uint8_t mask = 0; /* Wipe out any leading subblocks */ for(int i = offset; i > 0; --i) { mask |= (1 << i); used_subblocks--; } if(mask) { pool_header.block_usage[block++] &= ~mask; } /* Clear any full blocks in the middle of the allocation */ while(used_subblocks > 8) { pool_header.block_usage[block++] = 0; used_subblocks -= 8; } /* Wipe out any trailing subblocks */ mask = 0; for(size_t i = 0; i < used_subblocks; ++i) { mask |= (1 << (7 - i)); } if(mask) { pool_header.block_usage[block++] &= ~mask; } if(last) { last->next = it->next; } else { assert(it == pool_header.allocations); pool_header.allocations = it->next; } free(it); break; } last = it; it = it->next; } } void alloc_defrag_start(void* pool) { } void* alloc_defrag_address(void* pool, void* p) { } void alloc_defrag_commit(void* pool) { } bool alloc_defrag_in_progress(void* pool) { }