#include #include #include #include #include "private.h" #include "platform.h" #define _MIN(x, y) (x < y) ? x : y /* Lighting will not be calculated if the attenuation * multiplier ends up less than this value */ #define ATTENUATION_THRESHOLD 100.0f void _glPrecalcLightingValues(GLuint mask) { /* Pre-calculate lighting values */ GLshort i; Material* material = _glActiveMaterial(); if(mask & AMBIENT_MASK) { for(i = 0; i < MAX_GLDC_LIGHTS; ++i) { LightSource* light = _glLightAt(i); light->ambientMaterial[0] = light->ambient[0] * material->ambient[0]; light->ambientMaterial[1] = light->ambient[1] * material->ambient[1]; light->ambientMaterial[2] = light->ambient[2] * material->ambient[2]; light->ambientMaterial[3] = light->ambient[3] * material->ambient[3]; } } if(mask & DIFFUSE_MASK) { for(i = 0; i < MAX_GLDC_LIGHTS; ++i) { LightSource* light = _glLightAt(i); light->diffuseMaterial[0] = light->diffuse[0] * material->diffuse[0]; light->diffuseMaterial[1] = light->diffuse[1] * material->diffuse[1]; light->diffuseMaterial[2] = light->diffuse[2] * material->diffuse[2]; light->diffuseMaterial[3] = light->diffuse[3] * material->diffuse[3]; } } if(mask & SPECULAR_MASK) { for(i = 0; i < MAX_GLDC_LIGHTS; ++i) { LightSource* light = _glLightAt(i); light->specularMaterial[0] = light->specular[0] * material->specular[0]; light->specularMaterial[1] = light->specular[1] * material->specular[1]; light->specularMaterial[2] = light->specular[2] * material->specular[2]; light->specularMaterial[3] = light->specular[3] * material->specular[3]; } } /* If ambient or emission are updated, we need to update * the base colour. */ if((mask & AMBIENT_MASK) || (mask & EMISSION_MASK) || (mask & SCENE_AMBIENT_MASK)) { GLfloat* scene_ambient = _glLightModelSceneAmbient(); material->baseColour[0] = MATH_fmac(scene_ambient[0], material->ambient[0], material->emissive[0]); material->baseColour[1] = MATH_fmac(scene_ambient[1], material->ambient[1], material->emissive[1]); material->baseColour[2] = MATH_fmac(scene_ambient[2], material->ambient[2], material->emissive[2]); material->baseColour[3] = MATH_fmac(scene_ambient[3], material->ambient[3], material->emissive[3]); } } void _glInitLights() { Material* material = _glActiveMaterial(); static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f}; static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f}; static GLfloat PARTIAL [] = {0.2f, 0.2f, 0.2f, 1.0f}; static GLfloat MOSTLY [] = {0.8f, 0.8f, 0.8f, 1.0f}; memcpy(material->ambient, PARTIAL, sizeof(GLfloat) * 4); memcpy(material->diffuse, MOSTLY, sizeof(GLfloat) * 4); memcpy(material->specular, ZERO, sizeof(GLfloat) * 4); memcpy(material->emissive, ZERO, sizeof(GLfloat) * 4); material->exponent = 0.0f; GLubyte i; for(i = 0; i < MAX_GLDC_LIGHTS; ++i) { LightSource* light = _glLightAt(i); memcpy(light->ambient, ZERO, sizeof(GLfloat) * 4); memcpy(light->diffuse, ONE, sizeof(GLfloat) * 4); memcpy(light->specular, ONE, sizeof(GLfloat) * 4); if(i > 0) { memcpy(light->diffuse, ZERO, sizeof(GLfloat) * 4); memcpy(light->specular, ZERO, sizeof(GLfloat) * 4); } light->position[0] = light->position[1] = light->position[3] = 0.0f; light->position[2] = 1.0f; light->isDirectional = GL_TRUE; light->isEnabled = GL_FALSE; light->spot_direction[0] = light->spot_direction[1] = 0.0f; light->spot_direction[2] = -1.0f; light->spot_exponent = 0.0f; light->spot_cutoff = 180.0f; light->constant_attenuation = 1.0f; light->linear_attenuation = 0.0f; light->quadratic_attenuation = 0.0f; } _glPrecalcLightingValues(~0); _glRecalcEnabledLights(); } void APIENTRY glLightModelf(GLenum pname, const GLfloat param) { glLightModelfv(pname, ¶m); } void APIENTRY glLightModeli(GLenum pname, const GLint param) { glLightModeliv(pname, ¶m); } void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) { switch(pname) { case GL_LIGHT_MODEL_AMBIENT: { if(memcmp(_glGetLightModelSceneAmbient(), params, sizeof(float) * 4) != 0) { _glSetLightModelSceneAmbient(params); _glPrecalcLightingValues(SCENE_AMBIENT_MASK); } } break; case GL_LIGHT_MODEL_LOCAL_VIEWER: _glSetLightModelViewerInEyeCoordinates((*params) ? GL_TRUE : GL_FALSE); break; case GL_LIGHT_MODEL_TWO_SIDE: /* Not implemented */ default: _glKosThrowError(GL_INVALID_ENUM, __func__); } } void APIENTRY glLightModeliv(GLenum pname, const GLint* params) { switch(pname) { case GL_LIGHT_MODEL_COLOR_CONTROL: _glSetLightModelColorControl(*params); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: _glSetLightModelViewerInEyeCoordinates((*params) ? GL_TRUE : GL_FALSE); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); } } void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) { GLubyte idx = light & 0xF; if(idx >= MAX_GLDC_LIGHTS) { _glKosThrowError(GL_INVALID_VALUE, __func__); return; } GLuint mask = (pname == GL_AMBIENT) ? AMBIENT_MASK : (pname == GL_DIFFUSE) ? DIFFUSE_MASK : (pname == GL_SPECULAR) ? SPECULAR_MASK : 0; LightSource* l = _glLightAt(idx); GLboolean rebuild = GL_FALSE; switch(pname) { case GL_AMBIENT: rebuild = memcmp(l->ambient, params, sizeof(GLfloat) * 4) != 0; if(rebuild) { memcpy(l->ambient, params, sizeof(GLfloat) * 4); } break; case GL_DIFFUSE: rebuild = memcmp(l->diffuse, params, sizeof(GLfloat) * 4) != 0; if(rebuild) { memcpy(l->diffuse, params, sizeof(GLfloat) * 4); } break; case GL_SPECULAR: rebuild = memcmp(l->specular, params, sizeof(GLfloat) * 4) != 0; if(rebuild) { memcpy(l->specular, params, sizeof(GLfloat) * 4); } break; case GL_POSITION: { memcpy(l->position, params, sizeof(GLfloat) * 4); l->isDirectional = params[3] == 0.0f; if(l->isDirectional) { //FIXME: Do we need to rotate directional lights? } else { _glMatrixLoadModelView(); TransformVec3(l->position); } } break; case GL_SPOT_DIRECTION: { l->spot_direction[0] = params[0]; l->spot_direction[1] = params[1]; l->spot_direction[2] = params[2]; } break; case GL_CONSTANT_ATTENUATION: case GL_LINEAR_ATTENUATION: case GL_QUADRATIC_ATTENUATION: case GL_SPOT_CUTOFF: case GL_SPOT_EXPONENT: glLightf(light, pname, *params); break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); return; } if(rebuild) { _glPrecalcLightingValues(mask); } } void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) { GLubyte idx = light & 0xF; if(idx >= MAX_GLDC_LIGHTS) { _glKosThrowError(GL_INVALID_VALUE, __func__); return; } LightSource* l = _glLightAt(idx); switch(pname) { case GL_CONSTANT_ATTENUATION: l->constant_attenuation = param; break; case GL_LINEAR_ATTENUATION: l->linear_attenuation = param; break; case GL_QUADRATIC_ATTENUATION: l->quadratic_attenuation = param; break; case GL_SPOT_EXPONENT: l->spot_exponent = param; break; case GL_SPOT_CUTOFF: l->spot_cutoff = param; break; default: _glKosThrowError(GL_INVALID_ENUM, __func__); } } void APIENTRY glMaterialf(GLenum face, GLenum pname, const GLfloat param) { if(face == GL_BACK || pname != GL_SHININESS) { _glKosThrowError(GL_INVALID_ENUM, __func__); return; } _glActiveMaterial()->exponent = _MIN(param, 128); /* 128 is the max according to the GL spec */ } void APIENTRY glMateriali(GLenum face, GLenum pname, const GLint param) { glMaterialf(face, pname, param); } void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) { if(face == GL_BACK) { _glKosThrowError(GL_INVALID_ENUM, __func__); return; } Material* material = _glActiveMaterial(); GLboolean rebuild = GL_FALSE; switch(pname) { case GL_SHININESS: glMaterialf(face, pname, *params); rebuild = GL_TRUE; break; case GL_AMBIENT: { if(memcmp(material->ambient, params, sizeof(float) * 4) != 0) { vec4cpy(material->ambient, params); rebuild = GL_TRUE; } } break; case GL_DIFFUSE: if(memcmp(material->diffuse, params, sizeof(float) * 4) != 0) { vec4cpy(material->diffuse, params); rebuild = GL_TRUE; } break; case GL_SPECULAR: if(memcmp(material->specular, params, sizeof(float) * 4) != 0) { vec4cpy(material->specular, params); rebuild = GL_TRUE; } break; case GL_EMISSION: if(memcmp(material->emissive, params, sizeof(float) * 4) != 0) { vec4cpy(material->emissive, params); rebuild = GL_TRUE; } break; case GL_AMBIENT_AND_DIFFUSE: { rebuild = ( memcmp(material->ambient, params, sizeof(float) * 4) != 0 || memcmp(material->diffuse, params, sizeof(float) * 4) != 0 ); if(rebuild) { vec4cpy(material->ambient, params); vec4cpy(material->diffuse, params); } } break; case GL_COLOR_INDEXES: default: { _glKosThrowError(GL_INVALID_ENUM, __func__); return; } } if(rebuild) { GLuint updateMask = (pname == GL_AMBIENT) ? AMBIENT_MASK: (pname == GL_DIFFUSE) ? DIFFUSE_MASK: (pname == GL_SPECULAR) ? SPECULAR_MASK: (pname == GL_EMISSION) ? EMISSION_MASK: (pname == GL_AMBIENT_AND_DIFFUSE) ? AMBIENT_MASK | DIFFUSE_MASK : 0; _glPrecalcLightingValues(updateMask); } } void APIENTRY glColorMaterial(GLenum face, GLenum mode) { if(face != GL_FRONT_AND_BACK) { _glKosThrowError(GL_INVALID_ENUM, __func__); return; } GLint validModes[] = {GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE, GL_EMISSION, GL_SPECULAR, 0}; if(_glCheckValidEnum(mode, validModes, __func__) != 0) { return; } GLenum mask = (mode == GL_AMBIENT) ? AMBIENT_MASK: (mode == GL_DIFFUSE) ? DIFFUSE_MASK: (mode == GL_AMBIENT_AND_DIFFUSE) ? AMBIENT_MASK | DIFFUSE_MASK: (mode == GL_EMISSION) ? EMISSION_MASK : SPECULAR_MASK; _glSetColorMaterialMask(mask); _glSetColorMaterialMode(mode); } GL_FORCE_INLINE void bgra_to_float(const uint8_t* input, GLfloat* output) { static const float scale = 1.0f / 255.0f; output[0] = ((float) input[R8IDX]) * scale; output[1] = ((float) input[G8IDX]) * scale; output[2] = ((float) input[B8IDX]) * scale; output[3] = ((float) input[A8IDX]) * scale; } void _glUpdateColourMaterialA(const GLubyte* argb) { Material* material = _glActiveMaterial(); float colour[4]; bgra_to_float(argb, colour); vec4cpy(material->ambient, colour); GLenum mask = _glColorMaterialMode(); _glPrecalcLightingValues(mask); } void _glUpdateColourMaterialD(const GLubyte* argb) { Material* material = _glActiveMaterial(); float colour[4]; bgra_to_float(argb, colour); vec4cpy(material->diffuse, colour); GLenum mask = _glColorMaterialMode(); _glPrecalcLightingValues(mask); } void _glUpdateColourMaterialE(const GLubyte* argb) { Material* material = _glActiveMaterial(); float colour[4]; bgra_to_float(argb, colour); vec4cpy(material->emissive, colour); GLenum mask = _glColorMaterialMode(); _glPrecalcLightingValues(mask); } void _glUpdateColourMaterialAD(const GLubyte* argb) { Material* material = _glActiveMaterial(); float colour[4]; bgra_to_float(argb, colour); vec4cpy(material->ambient, colour); vec4cpy(material->diffuse, colour); GLenum mask = _glColorMaterialMode(); _glPrecalcLightingValues(mask); } GL_FORCE_INLINE GLboolean isDiffuseColorMaterial() { GLenum mode = _glColorMaterialMode(); return ( mode == GL_DIFFUSE || mode == GL_AMBIENT_AND_DIFFUSE ); } GL_FORCE_INLINE GLboolean isAmbientColorMaterial() { GLenum mode = _glColorMaterialMode(); return ( mode == GL_AMBIENT || mode == GL_AMBIENT_AND_DIFFUSE ); } GL_FORCE_INLINE GLboolean isSpecularColorMaterial() { GLenum mode = _glColorMaterialMode(); return (mode == GL_SPECULAR); } /* * Implementation from here (MIT): * https://github.com/appleseedhq/appleseed/blob/master/src/appleseed/foundation/math/fastmath.h */ GL_FORCE_INLINE float faster_pow2(const float p) { // Underflow of exponential is common practice in numerical routines, so handle it here. const float clipp = p < -126.0f ? -126.0f : p; const union { uint32_t i; float f; } v = { (uint32_t) ((1 << 23) * (clipp + 126.94269504f)) }; return v.f; } GL_FORCE_INLINE float faster_log2(const float x) { gl_assert(x >= 0.0f); const union { float f; uint32_t i; } vx = { x }; const float y = (float) (vx.i) * 1.1920928955078125e-7f; return y - 126.94269504f; } GL_FORCE_INLINE float faster_pow(const float x, const float p) { return faster_pow2(p * faster_log2(x)); } GL_FORCE_INLINE void _glLightVertexDirectional( float* final, uint8_t lid, float LdotN, float NdotH) { Material* material = _glActiveMaterial(); LightSource* light = _glLightAt(lid); float FI = (material->exponent) ? faster_pow((LdotN != 0.0f) * NdotH, material->exponent) : 1.0f; #define _PROCESS_COMPONENT(X) \ final[X] += (LdotN * light->diffuseMaterial[X] + light->ambientMaterial[X]) \ + (FI * light->specularMaterial[X]); \ _PROCESS_COMPONENT(0); _PROCESS_COMPONENT(1); _PROCESS_COMPONENT(2); #undef _PROCESS_COMPONENT } GL_FORCE_INLINE void _glLightVertexPoint( float* final, uint8_t lid, float LdotN, float NdotH, float att) { Material* material = _glActiveMaterial(); LightSource* light = _glLightAt(lid); float FI = (material->exponent) ? faster_pow((LdotN != 0.0f) * NdotH, material->exponent) : 1.0f; #define _PROCESS_COMPONENT(X) \ final[X] += ((LdotN * light->diffuseMaterial[X] + light->ambientMaterial[X]) \ + (FI * light->specularMaterial[X])) * att; \ _PROCESS_COMPONENT(0); _PROCESS_COMPONENT(1); _PROCESS_COMPONENT(2); #undef _PROCESS_COMPONENT } void _glPerformLighting(Vertex* vertices, EyeSpaceData* es, const uint32_t count) { GLubyte i; GLuint j; Material* material = _glActiveMaterial(); Vertex* vertex = vertices; EyeSpaceData* data = es; /* Calculate the colour material function once */ void (*updateColourMaterial)(const GLubyte*) = NULL; if(_glIsColorMaterialEnabled()) { GLenum mode = _glColorMaterialMode(); switch(mode) { case GL_AMBIENT: updateColourMaterial = _glUpdateColourMaterialA; break; case GL_DIFFUSE: updateColourMaterial = _glUpdateColourMaterialD; break; case GL_EMISSION: updateColourMaterial = _glUpdateColourMaterialE; break; case GL_AMBIENT_AND_DIFFUSE: updateColourMaterial = _glUpdateColourMaterialAD; break; } } /* Calculate the ambient lighting and set up colour material */ for(j = 0; j < count; ++j, ++vertex, ++data) { if(updateColourMaterial) { updateColourMaterial(vertex->bgra); } /* Copy the base colour across */ vec4cpy(data->finalColour, material->baseColour); } if(!_glEnabledLightCount()) { return; } vertex = vertices; data = es; for(j = 0; j < count; ++j, ++vertex, ++data) { /* Direction to vertex in eye space */ float Vx = -vertex->xyz[0]; float Vy = -vertex->xyz[1]; float Vz = -vertex->xyz[2]; VEC3_NORMALIZE(Vx, Vy, Vz); const float Nx = data->n[0]; const float Ny = data->n[1]; const float Nz = data->n[2]; for(i = 0; i < MAX_GLDC_LIGHTS; ++i) { LightSource* light = _glLightAt(i); if(!light->isEnabled) { continue; } float Lx = light->position[0] - vertex->xyz[0]; float Ly = light->position[1] - vertex->xyz[1]; float Lz = light->position[2] - vertex->xyz[2]; if(light->isDirectional) { float Hx = (Lx + 0); float Hy = (Ly + 0); float Hz = (Lz + 1); VEC3_NORMALIZE(Lx, Ly, Lz); VEC3_NORMALIZE(Hx, Hy, Hz); float LdotN, NdotH; VEC3_DOT( Nx, Ny, Nz, Lx, Ly, Lz, LdotN ); VEC3_DOT( Nx, Ny, Nz, Hx, Hy, Hz, NdotH ); if(LdotN < 0.0f) LdotN = 0.0f; if(NdotH < 0.0f) NdotH = 0.0f; _glLightVertexDirectional( data->finalColour, i, LdotN, NdotH ); } else { float D; VEC3_LENGTH(Lx, Ly, Lz, D); float att = ( light->constant_attenuation + ( light->linear_attenuation * D ) + (light->quadratic_attenuation * D * D) ); /* Anything over the attenuation threshold will * be a tiny value after inversion (< 0.01f) so * let's just skip the lighting at that point */ if(att < ATTENUATION_THRESHOLD) { att = MATH_Fast_Invert(att); float Hx = (Lx + Vx); float Hy = (Ly + Vy); float Hz = (Lz + Vz); VEC3_NORMALIZE(Lx, Ly, Lz); VEC3_NORMALIZE(Hx, Hy, Hz); float LdotN, NdotH; VEC3_DOT( Nx, Ny, Nz, Lx, Ly, Lz, LdotN ); VEC3_DOT( Nx, Ny, Nz, Hx, Hy, Hz, NdotH ); if(LdotN < 0.0f) LdotN = 0.0f; if(NdotH < 0.0f) NdotH = 0.0f; _glLightVertexPoint( data->finalColour, i, LdotN, NdotH, att ); } } } vertex->bgra[R8IDX] = clamp(data->finalColour[0] * 255.0f, 0, 255); vertex->bgra[G8IDX] = clamp(data->finalColour[1] * 255.0f, 0, 255); vertex->bgra[B8IDX] = clamp(data->finalColour[2] * 255.0f, 0, 255); vertex->bgra[A8IDX] = clamp(data->finalColour[3] * 255.0f, 0, 255); } } #undef LIGHT_COMPONENT