/* * This implements immediate mode over the top of glDrawArrays * current problems: * * 1. Calling glNormal(); glVertex(); glVertex(); glVertex(); will break. * 2. Mixing with glXPointer stuff will break badly * 3. This is entirely untested. */ #include #include #include "private.h" extern inline GLuint _glRecalcFastPath(); GLboolean IMMEDIATE_MODE_ACTIVE = GL_FALSE; static GLenum ACTIVE_POLYGON_MODE = GL_TRIANGLES; static GLfloat NORMAL[3] = {0.0f, 0.0f, 1.0f}; static GLubyte COLOR[4] = {255, 255, 255, 255}; /* ARGB order for speed */ static GLfloat UV_COORD[2] = {0.0f, 0.0f}; static GLfloat ST_COORD[2] = {0.0f, 0.0f}; static AlignedVector VERTICES; static AttribPointerList IM_ATTRIBS; /* We store the list of attributes that have been "enabled" by a call to glColor, glNormal, glTexCoord etc. otherwise we already have defaults that can be applied faster */ static GLuint IM_ENABLED_VERTEX_ATTRIBUTES = 0; typedef struct { GLfloat x; GLfloat y; GLfloat z; GLfloat u; GLfloat v; GLfloat s; GLfloat t; GLubyte bgra[4]; GLfloat nx; GLfloat ny; GLfloat nz; GLuint padding[5]; } IMVertex; void _glInitImmediateMode(GLuint initial_size) { aligned_vector_init(&VERTICES, sizeof(IMVertex)); aligned_vector_reserve(&VERTICES, initial_size); IM_ATTRIBS.vertex.ptr = VERTICES.data; IM_ATTRIBS.vertex.size = 3; IM_ATTRIBS.vertex.type = GL_FLOAT; IM_ATTRIBS.vertex.stride = sizeof(IMVertex); IM_ATTRIBS.uv.ptr = IM_ATTRIBS.vertex.ptr + (sizeof(GLfloat) * 3); IM_ATTRIBS.uv.stride = sizeof(IMVertex); IM_ATTRIBS.uv.type = GL_FLOAT; IM_ATTRIBS.uv.size = 2; IM_ATTRIBS.st.ptr = IM_ATTRIBS.vertex.ptr + (sizeof(GLfloat) * 5); IM_ATTRIBS.st.stride = sizeof(IMVertex); IM_ATTRIBS.st.type = GL_FLOAT; IM_ATTRIBS.st.size = 2; IM_ATTRIBS.colour.ptr = IM_ATTRIBS.vertex.ptr + (sizeof(GLfloat) * 7); IM_ATTRIBS.colour.size = GL_BGRA; /* Flipped color order */ IM_ATTRIBS.colour.type = GL_UNSIGNED_BYTE; IM_ATTRIBS.colour.stride = sizeof(IMVertex); IM_ATTRIBS.normal.ptr = IM_ATTRIBS.vertex.ptr + (sizeof(GLfloat) * 7) + sizeof(uint32_t); IM_ATTRIBS.normal.stride = sizeof(IMVertex); IM_ATTRIBS.normal.type = GL_FLOAT; IM_ATTRIBS.normal.size = 3; } void APIENTRY glBegin(GLenum mode) { if(IMMEDIATE_MODE_ACTIVE) { _glKosThrowError(GL_INVALID_OPERATION, __func__); return; } IMMEDIATE_MODE_ACTIVE = GL_TRUE; ACTIVE_POLYGON_MODE = mode; } void APIENTRY glColor4f(GLfloat r, GLfloat g, GLfloat b, GLfloat a) { IM_ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; COLOR[A8IDX] = (GLubyte)(a * 255.0f); COLOR[R8IDX] = (GLubyte)(r * 255.0f); COLOR[G8IDX] = (GLubyte)(g * 255.0f); COLOR[B8IDX] = (GLubyte)(b * 255.0f); } void APIENTRY glColor4ub(GLubyte r, GLubyte g, GLubyte b, GLubyte a) { IM_ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; COLOR[A8IDX] = a; COLOR[R8IDX] = r; COLOR[G8IDX] = g; COLOR[B8IDX] = b; } void APIENTRY glColor4ubv(const GLubyte *v) { IM_ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; COLOR[A8IDX] = v[3]; COLOR[R8IDX] = v[0]; COLOR[G8IDX] = v[1]; COLOR[B8IDX] = v[2]; } void APIENTRY glColor4fv(const GLfloat* v) { IM_ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; COLOR[B8IDX] = (GLubyte)(v[2] * 255); COLOR[G8IDX] = (GLubyte)(v[1] * 255); COLOR[R8IDX] = (GLubyte)(v[0] * 255); COLOR[A8IDX] = (GLubyte)(v[3] * 255); } void APIENTRY glColor3f(GLfloat r, GLfloat g, GLfloat b) { IM_ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; COLOR[B8IDX] = (GLubyte)(b * 255.0f); COLOR[G8IDX] = (GLubyte)(g * 255.0f); COLOR[R8IDX] = (GLubyte)(r * 255.0f); COLOR[A8IDX] = 255; } void APIENTRY glColor3ub(GLubyte red, GLubyte green, GLubyte blue) { IM_ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; COLOR[A8IDX] = 255; COLOR[R8IDX] = red; COLOR[G8IDX] = green; COLOR[B8IDX] = blue; } void APIENTRY glColor3ubv(const GLubyte *v) { IM_ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; COLOR[A8IDX] = 255; COLOR[R8IDX] = v[0]; COLOR[G8IDX] = v[1]; COLOR[B8IDX] = v[2]; } void APIENTRY glColor3fv(const GLfloat* v) { IM_ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG; COLOR[A8IDX] = 255; COLOR[R8IDX] = (GLubyte)(v[0] * 255); COLOR[G8IDX] = (GLubyte)(v[1] * 255); COLOR[B8IDX] = (GLubyte)(v[2] * 255); } void APIENTRY glVertex3f(GLfloat x, GLfloat y, GLfloat z) { IM_ENABLED_VERTEX_ATTRIBUTES |= VERTEX_ENABLED_FLAG; unsigned int cap = VERTICES.capacity; IMVertex* vert = aligned_vector_extend(&VERTICES, 1); if(cap != VERTICES.capacity) { /* Resizing could've invalidated the pointers */ IM_ATTRIBS.vertex.ptr = VERTICES.data; IM_ATTRIBS.uv.ptr = IM_ATTRIBS.vertex.ptr + (sizeof(GLfloat) * 3); IM_ATTRIBS.st.ptr = IM_ATTRIBS.vertex.ptr + (sizeof(GLfloat) * 5); IM_ATTRIBS.colour.ptr = IM_ATTRIBS.vertex.ptr + (sizeof(GLfloat) * 7); IM_ATTRIBS.normal.ptr = IM_ATTRIBS.vertex.ptr + (sizeof(GLfloat) * 7) + sizeof(uint32_t); } vert->x = x; vert->y = y; vert->z = z; vert->u = UV_COORD[0]; vert->v = UV_COORD[1]; vert->s = ST_COORD[0]; vert->t = ST_COORD[1]; *((uint32_t*) vert->bgra) = *((uint32_t*) COLOR); vert->nx = NORMAL[0]; vert->ny = NORMAL[1]; vert->nz = NORMAL[2]; } void APIENTRY glVertex3fv(const GLfloat* v) { glVertex3f(v[0], v[1], v[2]); } void APIENTRY glVertex2f(GLfloat x, GLfloat y) { glVertex3f(x, y, 0.0f); } void APIENTRY glVertex2fv(const GLfloat* v) { glVertex2f(v[0], v[1]); } void APIENTRY glVertex4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { _GL_UNUSED(w); glVertex3f(x, y, z); } void APIENTRY glVertex4fv(const GLfloat* v) { glVertex4f(v[0], v[1], v[2], v[3]); } void APIENTRY glMultiTexCoord2fARB(GLenum target, GLfloat s, GLfloat t) { if(target == GL_TEXTURE0) { IM_ENABLED_VERTEX_ATTRIBUTES |= UV_ENABLED_FLAG; UV_COORD[0] = s; UV_COORD[1] = t; } else if(target == GL_TEXTURE1) { IM_ENABLED_VERTEX_ATTRIBUTES |= ST_ENABLED_FLAG; ST_COORD[0] = s; ST_COORD[1] = t; } else { _glKosThrowError(GL_INVALID_ENUM, __func__); return; } } void APIENTRY glTexCoord2f(GLfloat u, GLfloat v) { IM_ENABLED_VERTEX_ATTRIBUTES |= UV_ENABLED_FLAG; UV_COORD[0] = u; UV_COORD[1] = v; } void APIENTRY glTexCoord2fv(const GLfloat* v) { glTexCoord2f(v[0], v[1]); } void APIENTRY glNormal3f(GLfloat x, GLfloat y, GLfloat z) { IM_ENABLED_VERTEX_ATTRIBUTES |= NORMAL_ENABLED_FLAG; NORMAL[0] = x; NORMAL[1] = y; NORMAL[2] = z; } void APIENTRY glNormal3fv(const GLfloat* v) { glNormal3f(v[0], v[1], v[2]); } void APIENTRY glEnd() { IMMEDIATE_MODE_ACTIVE = GL_FALSE; GLuint* attrs = &ENABLED_VERTEX_ATTRIBUTES; /* Redirect attrib pointers */ AttribPointerList stashed_attrib_pointers = ATTRIB_POINTERS; ATTRIB_POINTERS = IM_ATTRIBS; GLuint prevAttrs = *attrs; *attrs = IM_ENABLED_VERTEX_ATTRIBUTES; /* Store the fast path enabled setting so we can restore it * after drawing */ const GLboolean fp_was_enabled = FAST_PATH_ENABLED; #ifndef NDEBUG // Immediate mode should always activate the fast path GLuint fastPathEnabled = _glRecalcFastPath(); assert(fastPathEnabled); #else /* If we're not debugging, set to true - we assume we haven't broken it! */ FAST_PATH_ENABLED = GL_TRUE; #endif glDrawArrays(ACTIVE_POLYGON_MODE, 0, VERTICES.size); ATTRIB_POINTERS = stashed_attrib_pointers; *attrs = prevAttrs; aligned_vector_clear(&VERTICES); FAST_PATH_ENABLED = fp_was_enabled; } void APIENTRY glRectf(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2) { glBegin(GL_QUADS); glVertex2f(x1, y1); glVertex2f(x2, y1); glVertex2f(x2, y2); glVertex2f(x1, y2); glEnd(); } void APIENTRY glRectfv(const GLfloat *v1, const GLfloat *v2) { glBegin(GL_QUADS); glVertex2f(v1[0], v1[1]); glVertex2f(v2[0], v1[1]); glVertex2f(v2[0], v2[1]); glVertex2f(v1[0], v2[1]); glEnd(); } void APIENTRY glRecti(GLint x1, GLint y1, GLint x2, GLint y2) { return glRectf((GLfloat)x1, (GLfloat)y1, (GLfloat)x2, (GLfloat)y2); } void APIENTRY glRectiv(const GLint *v1, const GLint *v2) { return glRectfv((const GLfloat *)v1, (const GLfloat *)v2); }