682 lines
18 KiB
C
682 lines
18 KiB
C
|
|
|
|
#include <kos.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "../include/glkos.h"
|
|
#include "../containers/aligned_vector.h"
|
|
#include "private.h"
|
|
#include "profiler.h"
|
|
#include "version.h"
|
|
|
|
#include "flush.h"
|
|
|
|
#define CLIP_DEBUG 0
|
|
|
|
#define TA_SQ_ADDR (unsigned int *)(void *) \
|
|
(0xe0000000 | (((unsigned long)0x10000000) & 0x03ffffe0))
|
|
|
|
static PolyList OP_LIST;
|
|
static PolyList PT_LIST;
|
|
static PolyList TR_LIST;
|
|
|
|
static const int STRIDE = sizeof(Vertex) / sizeof(GLuint);
|
|
|
|
#define CLIP_TO_PLANE(vert1, vert2) \
|
|
do { \
|
|
float t = _glClipLineToNearZ((vert1), (vert2), out); \
|
|
interpolateVec2((vert1)->uv, (vert2)->uv, t, out->uv); \
|
|
interpolateVec3((vert1)->nxyz, (vert2)->nxyz, t, out->nxyz); \
|
|
interpolateVec2((vert1)->st, (vert2)->st, t, out->st); \
|
|
interpolateColour((vert1)->bgra, (vert2)->bgra, t, out->bgra); \
|
|
} while(0); \
|
|
|
|
|
|
GL_FORCE_INLINE float _glClipLineToNearZ(const Vertex* v1, const Vertex* v2, Vertex* vout) {
|
|
TRACE();
|
|
|
|
const float d0 = v1->w;
|
|
const float d1 = v2->w;
|
|
|
|
assert(isVisible(v1) ^ isVisible(v2));
|
|
|
|
/* We need to shift 't' a little, to avoid the possibility that a
|
|
* rounding error leaves the new vertex behind the near plane. We shift
|
|
* according to the direction we're clipping across the plane */
|
|
const float epsilon = (d0 < d1) ? 0.000001 : -0.000001;
|
|
float t = MATH_Fast_Divide(d0, (d0 - d1)) + epsilon;
|
|
|
|
vout->xyz[0] = MATH_fmac(v2->xyz[0] - v1->xyz[0], t, v1->xyz[0]);
|
|
vout->xyz[1] = MATH_fmac(v2->xyz[1] - v1->xyz[1], t, v1->xyz[1]);
|
|
vout->xyz[2] = MATH_fmac(v2->xyz[2] - v1->xyz[2], t, v1->xyz[2]);
|
|
vout->w = MATH_fmac(v2->w - v1->w, t, v1->w);
|
|
|
|
#if CLIP_DEBUG
|
|
printf(
|
|
"(%f, %f, %f, %f) -> %f -> (%f, %f, %f, %f) = (%f, %f, %f, %f)\n",
|
|
v1->xyz[0], v1->xyz[1], v1->xyz[2], v1->w, t,
|
|
v2->xyz[0], v2->xyz[1], v2->xyz[2], v2->w,
|
|
vout->xyz[0], vout->xyz[1], vout->xyz[2], vout->w
|
|
);
|
|
#endif
|
|
|
|
return t;
|
|
}
|
|
|
|
GL_FORCE_INLINE void interpolateFloat(const float v1, const float v2, const float t, float* out) {
|
|
*out = MATH_fmac(v2 - v1,t, v1);
|
|
}
|
|
|
|
GL_FORCE_INLINE void interpolateVec2(const float* v1, const float* v2, const float t, float* out) {
|
|
interpolateFloat(v1[0], v2[0], t, &out[0]);
|
|
interpolateFloat(v1[1], v2[1], t, &out[1]);
|
|
}
|
|
|
|
GL_FORCE_INLINE void interpolateVec3(const float* v1, const float* v2, const float t, float* out) {
|
|
interpolateFloat(v1[0], v2[0], t, &out[0]);
|
|
interpolateFloat(v1[1], v2[1], t, &out[1]);
|
|
interpolateFloat(v1[2], v2[2], t, &out[2]);
|
|
}
|
|
|
|
GL_FORCE_INLINE void interpolateVec4(const float* v1, const float* v2, const float t, float* out) {
|
|
interpolateFloat(v1[0], v2[0], t, &out[0]);
|
|
interpolateFloat(v1[1], v2[1], t, &out[1]);
|
|
interpolateFloat(v1[2], v2[2], t, &out[2]);
|
|
interpolateFloat(v1[3], v2[3], t, &out[3]);
|
|
}
|
|
|
|
GL_FORCE_INLINE void interpolateColour(const uint8_t* v1, const uint8_t* v2, const float t, uint8_t* out) {
|
|
out[0] = v1[0] + (uint32_t) (((float) (v2[0] - v1[0])) * t);
|
|
out[1] = v1[1] + (uint32_t) (((float) (v2[1] - v1[1])) * t);
|
|
out[2] = v1[2] + (uint32_t) (((float) (v2[2] - v1[2])) * t);
|
|
out[3] = v1[3] + (uint32_t) (((float) (v2[3] - v1[3])) * t);
|
|
}
|
|
|
|
static Vertex* interpolate_vertex(const Vertex* v0, const Vertex* v1, Vertex* out) {
|
|
/* If v0 is in front of the near plane, and v1 is behind the near plane, this
|
|
* generates a vertex *on* the near plane */
|
|
CLIP_TO_PLANE(v0, v1);
|
|
|
|
/* We can't have a W == 0, or we'll get a divide by zero. If we have a W < 0
|
|
* then our clipping has gone wrong! */
|
|
assert(out->w > 0.0f);
|
|
|
|
return out;
|
|
}
|
|
|
|
GL_FORCE_INLINE ListIterator* header_reset(ListIterator* it, Vertex* header) {
|
|
it->active = header;
|
|
it->visibility = 0;
|
|
it->triangle_count = 0;
|
|
it->stack_idx = -1;
|
|
return it;
|
|
}
|
|
|
|
GL_FORCE_INLINE Vertex* current_postinc(ListIterator* it) {
|
|
if(it->remaining == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
it->remaining--;
|
|
Vertex* current = it->src;
|
|
it->src++;
|
|
return current;
|
|
}
|
|
|
|
GL_FORCE_INLINE Vertex* push_stack(ListIterator* it) {
|
|
#if CLIP_DEBUG
|
|
printf("Using stack: %d\n", it->stack_idx + 1);
|
|
#endif
|
|
|
|
assert(it->stack_idx + 1 < MAX_STACK);
|
|
return &it->stack[++it->stack_idx];
|
|
}
|
|
|
|
GL_FORCE_INLINE GLboolean shift(ListIterator* it, Vertex* new_vertex) {
|
|
TRACE();
|
|
|
|
/*
|
|
* Shifts in a new vertex, dropping the oldest. If
|
|
* new_vertex is NULL it will return GL_FALSE (but still
|
|
* shift) */
|
|
if(new_vertex) {
|
|
it->triangle_count++;
|
|
} else {
|
|
// We shifted a NULL, so we're reducing
|
|
// the available count rather than increasing
|
|
it->triangle_count--;
|
|
}
|
|
|
|
if(it->triangle_count > 3) {
|
|
it->triangle_count = 3;
|
|
}
|
|
|
|
it->triangle[0] = it->triangle[1];
|
|
it->triangle[1] = it->triangle[2];
|
|
it->triangle[2] = new_vertex;
|
|
|
|
it->visibility <<= 1;
|
|
it->visibility &= 7;
|
|
it->visibility += (new_vertex) ? isVisible(new_vertex) : 0;
|
|
|
|
return new_vertex != NULL;
|
|
}
|
|
|
|
static ListIterator* finish_clip(ListIterator* it) {
|
|
/* When we've clipped a triangle, we either need to reduce
|
|
* the triangle_count so that next iteration we move to the next
|
|
* triangle OR we need to shift away the vertices in the triangle
|
|
* buffer entirely so next iteration starts a new strip.
|
|
* FIXME: Do we need to swap the verts in the triangle buffer for winding? */
|
|
|
|
if(it->src && isVertex(it->src)) {
|
|
/* Continue */
|
|
it->triangle_count--;
|
|
} else {
|
|
/* Restart strip */
|
|
while(it->triangle_count) {
|
|
shift(it, NULL);
|
|
}
|
|
}
|
|
|
|
return it;
|
|
}
|
|
|
|
static ListIterator* clip100(ListIterator* it) {
|
|
#if CLIP_DEBUG
|
|
printf(">> clip100\n");
|
|
#endif
|
|
|
|
TRACE();
|
|
|
|
/* First visible only */
|
|
Vertex* gen3 = push_stack(it);
|
|
Vertex* gen2 = push_stack(it);
|
|
Vertex* gen1 = push_stack(it);
|
|
|
|
assert(gen1);
|
|
assert(gen2);
|
|
assert(gen3);
|
|
|
|
*gen1 = *it->triangle[0];
|
|
|
|
interpolate_vertex(it->triangle[0], it->triangle[1], gen2);
|
|
interpolate_vertex(it->triangle[0], it->triangle[2], gen3);
|
|
|
|
gen1->flags = PVR_CMD_VERTEX;
|
|
gen2->flags = PVR_CMD_VERTEX;
|
|
gen3->flags = PVR_CMD_VERTEX_EOL;
|
|
|
|
assert(gen1);
|
|
assert(gen2);
|
|
assert(gen3);
|
|
|
|
assert(isVisible(gen1));
|
|
assert(isVisible(gen2));
|
|
assert(isVisible(gen3));
|
|
|
|
assert(isVertex(gen1));
|
|
assert(isVertex(gen2));
|
|
assert(isVertex(gen3));
|
|
|
|
it->active = gen1;
|
|
it->stack_idx--;
|
|
|
|
return finish_clip(it);
|
|
}
|
|
|
|
static ListIterator* clip110(ListIterator* it) {
|
|
#if CLIP_DEBUG
|
|
printf(">> clip110\n");
|
|
#endif
|
|
|
|
TRACE();
|
|
|
|
/* First two visible. so we need to create 2 new vertices from
|
|
* A -> C, and B -> C. */
|
|
Vertex* gen4 = push_stack(it);
|
|
Vertex* gen3 = push_stack(it);
|
|
Vertex* gen2 = push_stack(it);
|
|
Vertex* gen1 = push_stack(it);
|
|
|
|
gen1->flags = PVR_CMD_VERTEX;
|
|
gen2->flags = PVR_CMD_VERTEX;
|
|
gen3->flags = PVR_CMD_VERTEX;
|
|
gen4->flags = PVR_CMD_VERTEX_EOL;
|
|
|
|
*gen1 = *it->triangle[0];
|
|
*gen2 = *it->triangle[1];
|
|
|
|
interpolate_vertex(it->triangle[0], it->triangle[2], gen3);
|
|
interpolate_vertex(it->triangle[1], it->triangle[2], gen4);
|
|
|
|
/* Return A */
|
|
it->active = gen1;
|
|
it->stack_idx--;
|
|
|
|
assert(isVisible(gen1));
|
|
assert(isVisible(gen2));
|
|
assert(isVisible(gen3));
|
|
assert(isVisible(gen4));
|
|
assert(isVertex(gen1));
|
|
assert(isVertex(gen2));
|
|
assert(isVertex(gen3));
|
|
assert(isVertex(gen4));
|
|
|
|
return finish_clip(it);
|
|
}
|
|
|
|
static ListIterator* clip101(ListIterator* it) {
|
|
#if CLIP_DEBUG
|
|
printf(">> clip101\n");
|
|
#endif
|
|
|
|
TRACE();
|
|
/* First visible and last visible. Need to create two
|
|
* vertices in between first and last! */
|
|
|
|
Vertex* gen4 = push_stack(it);
|
|
Vertex* gen3 = push_stack(it);
|
|
Vertex* gen2 = push_stack(it);
|
|
Vertex* gen1 = push_stack(it);
|
|
|
|
/* First and last need to be the same*/
|
|
*gen1 = *it->triangle[0];
|
|
*gen2 = *it->triangle[2];
|
|
|
|
gen1->flags = PVR_CMD_VERTEX;
|
|
gen2->flags = PVR_CMD_VERTEX;
|
|
gen3->flags = PVR_CMD_VERTEX;
|
|
gen4->flags = PVR_CMD_VERTEX_EOL; /* 4 is now last in the list */
|
|
|
|
interpolate_vertex(it->triangle[0], it->triangle[1], gen3);
|
|
interpolate_vertex(it->triangle[1], it->triangle[2], gen4);
|
|
|
|
it->active = gen1;
|
|
it->stack_idx--;
|
|
|
|
return finish_clip(it);
|
|
}
|
|
|
|
static ListIterator* clip011(ListIterator* it) {
|
|
#if CLIP_DEBUG
|
|
printf(">> clip011\n");
|
|
#endif
|
|
|
|
TRACE();
|
|
/* Last two visible, we need to create two new vertices */
|
|
|
|
Vertex* gen4 = push_stack(it);
|
|
Vertex* gen3 = push_stack(it);
|
|
Vertex* gen2 = push_stack(it);
|
|
Vertex* gen1 = push_stack(it);
|
|
|
|
*gen3 = *it->triangle[1];
|
|
*gen4 = *it->triangle[2];
|
|
|
|
gen1->flags = PVR_CMD_VERTEX;
|
|
gen2->flags = PVR_CMD_VERTEX;
|
|
gen3->flags = PVR_CMD_VERTEX;
|
|
gen4->flags = PVR_CMD_VERTEX_EOL; /* 4 is now last in the list */
|
|
|
|
interpolate_vertex(it->triangle[0], it->triangle[1], gen1);
|
|
interpolate_vertex(it->triangle[0], it->triangle[2], gen2);
|
|
|
|
it->active = gen1;
|
|
it->stack_idx--;
|
|
|
|
return finish_clip(it);
|
|
}
|
|
|
|
static ListIterator* clip001(ListIterator* it) {
|
|
#if CLIP_DEBUG
|
|
printf(">> clip001\n");
|
|
#endif
|
|
|
|
TRACE();
|
|
/* Last visible? Just replace the first two vertices */
|
|
|
|
Vertex* gen3 = push_stack(it);
|
|
Vertex* gen2 = push_stack(it);
|
|
Vertex* gen1 = push_stack(it);
|
|
|
|
*gen3 = *it->triangle[2];
|
|
|
|
gen1->flags = PVR_CMD_VERTEX;
|
|
gen2->flags = PVR_CMD_VERTEX;
|
|
gen3->flags = PVR_CMD_VERTEX_EOL;
|
|
|
|
interpolate_vertex(it->triangle[0], it->triangle[2], gen1);
|
|
interpolate_vertex(it->triangle[2], it->triangle[1], gen2);
|
|
|
|
it->active = gen1;
|
|
it->stack_idx--;
|
|
|
|
return finish_clip(it);
|
|
}
|
|
|
|
static ListIterator* clip010(ListIterator* it) {
|
|
#if CLIP_DEBUG
|
|
printf(">> clip010\n");
|
|
#endif
|
|
|
|
TRACE();
|
|
/* First and last need replacing */
|
|
|
|
Vertex* gen3 = push_stack(it);
|
|
Vertex* gen2 = push_stack(it);
|
|
Vertex* gen1 = push_stack(it);
|
|
|
|
*gen2 = *it->triangle[1];
|
|
|
|
gen1->flags = PVR_CMD_VERTEX;
|
|
gen2->flags = PVR_CMD_VERTEX;
|
|
gen3->flags = PVR_CMD_VERTEX_EOL;
|
|
|
|
interpolate_vertex(it->triangle[0], it->triangle[1], gen1);
|
|
interpolate_vertex(it->triangle[1], it->triangle[2], gen3);
|
|
|
|
it->active = gen1;
|
|
it->stack_idx--;
|
|
|
|
return finish_clip(it);
|
|
}
|
|
|
|
ListIterator* _glIteratorBegin(void* src, int n) {
|
|
TRACE();
|
|
|
|
ListIterator* it = (ListIterator*) malloc(sizeof(ListIterator));
|
|
it->remaining = n - 1;
|
|
it->active = (Vertex*) src;
|
|
it->src = it->active + 1;
|
|
it->stack_idx = -1;
|
|
it->triangle_count = 0;
|
|
it->visibility = 0;
|
|
it->triangle[0] = it->triangle[1] = it->triangle[2] = NULL;
|
|
return (n) ? it : NULL;
|
|
}
|
|
|
|
ListIterator* _glIteratorNext(ListIterator* it) {
|
|
TRACE();
|
|
|
|
/* Return any vertices we generated */
|
|
if(it->stack_idx > -1) {
|
|
#if CLIP_DEBUG
|
|
printf("Yielding stack: %d\n", it->stack_idx);
|
|
#endif
|
|
|
|
it->active = &it->stack[it->stack_idx--];
|
|
return it;
|
|
}
|
|
|
|
/* None remaining in the list, and the stack is empty */
|
|
if(!it->remaining && !it->triangle_count) {
|
|
return NULL;
|
|
}
|
|
|
|
_Bool retry = 1;
|
|
while(retry) {
|
|
retry = 0;
|
|
assert(it);
|
|
assert(it->src);
|
|
|
|
_Bool is_header = !isVertex(it->src);
|
|
|
|
/* If we hit a header, and we have vertices still
|
|
* not returned, shift them out and return them */
|
|
if(is_header && it->triangle_count) {
|
|
shift(it, NULL);
|
|
it->active = it->triangle[0];
|
|
return it;
|
|
} else if(is_header) {
|
|
return header_reset(it, current_postinc(it));
|
|
} else {
|
|
/* Make sure we have a full triangle of vertices */
|
|
while(it->triangle_count < 3) {
|
|
if(!shift(it, current_postinc(it))) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* OK, by this point we should have info for a complete triangle
|
|
* including visibility */
|
|
switch(it->visibility) {
|
|
case B111:
|
|
#if CLIP_DEBUG
|
|
printf("111\n");
|
|
#endif
|
|
|
|
/* Totally visible, return the first vertex */
|
|
it->active = it->triangle[0];
|
|
it->triangle_count--;
|
|
return it;
|
|
break;
|
|
case B100: {
|
|
return clip100(it);
|
|
} break;
|
|
case B101: {
|
|
return clip101(it);
|
|
} break;
|
|
case B110: {
|
|
return clip110(it);
|
|
} break;
|
|
case B011: {
|
|
return clip011(it);
|
|
} break;
|
|
case B001: {
|
|
return clip001(it);
|
|
} break;
|
|
case B010: {
|
|
return clip010(it);
|
|
} break;
|
|
case B000: {
|
|
#if CLIP_DEBUG
|
|
printf("000\n");
|
|
#endif
|
|
|
|
/* If a triangle is invisible, there are 3 situations:
|
|
*
|
|
* 1. It's the last triangle, so we end here
|
|
* 2. It was the last triangle before a header, in which
|
|
* case we return the header
|
|
* 3. It was not the last triangle in the strip, so we just
|
|
* go around again to shift the next vertex (we don't return
|
|
* anything because it's invisible...) */
|
|
assert(it);
|
|
assert(it->src);
|
|
|
|
if(!it->remaining) {
|
|
return NULL;
|
|
} else if(!isVertex(it->src)) {
|
|
return header_reset(it, current_postinc(it));
|
|
} else {
|
|
it->triangle_count--;
|
|
retry = 1;
|
|
}
|
|
} break;
|
|
default:
|
|
break; // Impossible
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(0 && "Fell threw!");
|
|
return NULL;
|
|
}
|
|
|
|
GL_FORCE_INLINE void perspective_divide(Vertex* vertex) {
|
|
float f = MATH_Fast_Invert(vertex->w);
|
|
vertex->xyz[0] *= f;
|
|
vertex->xyz[1] *= f;
|
|
vertex->xyz[2] *= f;
|
|
vertex->xyz[2] = MAX(1.0f - (vertex->xyz[2] * 0.5f + 0.5f), 0.0001f);
|
|
}
|
|
|
|
static void pvr_list_submit(void *src, int n) {
|
|
GLuint *d = TA_SQ_ADDR;
|
|
|
|
/* First entry is assumed to always be a header and therefore
|
|
* always submitted (e.g. not clipped) */
|
|
|
|
ListIterator* it = _glIteratorBegin(src, n);
|
|
|
|
/* fill/write queues as many times necessary */
|
|
while(it) {
|
|
__asm__("pref @%0" : : "r"(it->active + 1)); /* prefetch 64 bytes for next loop */
|
|
|
|
if(isVertex(it->active)) {
|
|
perspective_divide(it->active);
|
|
}
|
|
|
|
GLuint* s = (GLuint*) it->active;
|
|
|
|
d[0] = *(s++);
|
|
d[1] = *(s++);
|
|
d[2] = *(s++);
|
|
d[3] = *(s++);
|
|
d[4] = *(s++);
|
|
d[5] = *(s++);
|
|
d[6] = *(s++);
|
|
d[7] = *(s++);
|
|
|
|
/* This prefetch actually commits 32 bytes to the SQ */
|
|
__asm__("pref @%0" : : "r"(d));
|
|
|
|
d += 8; /* Move to the next SQ address */
|
|
|
|
it = _glIteratorNext(it);
|
|
}
|
|
|
|
/* Wait for both store queues to complete */
|
|
d = (GLuint *)0xe0000000;
|
|
d[0] = d[8] = 0;
|
|
|
|
free(it);
|
|
}
|
|
|
|
static void _glInitPVR(GLboolean autosort, GLboolean fsaa) {
|
|
pvr_init_params_t params = {
|
|
/* Enable opaque and translucent polygons with size 32 and 32 */
|
|
{PVR_BINSIZE_32, PVR_BINSIZE_0, PVR_BINSIZE_32, PVR_BINSIZE_0, PVR_BINSIZE_32},
|
|
PVR_VERTEX_BUF_SIZE, /* Vertex buffer size */
|
|
0, /* No DMA */
|
|
fsaa,
|
|
(autosort) ? 0 : 1
|
|
};
|
|
|
|
pvr_init(¶ms);
|
|
}
|
|
|
|
|
|
PolyList* _glActivePolyList() {
|
|
if(_glIsBlendingEnabled()) {
|
|
return &TR_LIST;
|
|
} else if(_glIsAlphaTestEnabled()) {
|
|
return &PT_LIST;
|
|
} else {
|
|
return &OP_LIST;
|
|
}
|
|
}
|
|
|
|
PolyList *_glTransparentPolyList() {
|
|
return &TR_LIST;
|
|
}
|
|
|
|
void APIENTRY glFlush() {
|
|
|
|
}
|
|
|
|
void APIENTRY glFinish() {
|
|
|
|
}
|
|
|
|
|
|
void APIENTRY glKosInitConfig(GLdcConfig* config) {
|
|
config->autosort_enabled = GL_FALSE;
|
|
config->fsaa_enabled = GL_FALSE;
|
|
|
|
config->initial_op_capacity = 1024;
|
|
config->initial_pt_capacity = 512;
|
|
config->initial_tr_capacity = 1024;
|
|
config->initial_immediate_capacity = 1024;
|
|
config->internal_palette_format = GL_RGBA4;
|
|
}
|
|
|
|
void APIENTRY glKosInitEx(GLdcConfig* config) {
|
|
TRACE();
|
|
|
|
printf("\nWelcome to GLdc! Git revision: %s\n\n", GLDC_VERSION);
|
|
|
|
_glInitPVR(config->autosort_enabled, config->fsaa_enabled);
|
|
|
|
_glInitMatrices();
|
|
_glInitAttributePointers();
|
|
_glInitContext();
|
|
_glInitLights();
|
|
_glInitImmediateMode(config->initial_immediate_capacity);
|
|
_glInitFramebuffers();
|
|
|
|
_glSetInternalPaletteFormat(config->internal_palette_format);
|
|
|
|
_glInitTextures();
|
|
|
|
OP_LIST.list_type = PVR_LIST_OP_POLY;
|
|
PT_LIST.list_type = PVR_LIST_PT_POLY;
|
|
TR_LIST.list_type = PVR_LIST_TR_POLY;
|
|
|
|
aligned_vector_init(&OP_LIST.vector, sizeof(Vertex));
|
|
aligned_vector_init(&PT_LIST.vector, sizeof(Vertex));
|
|
aligned_vector_init(&TR_LIST.vector, sizeof(Vertex));
|
|
|
|
aligned_vector_reserve(&OP_LIST.vector, config->initial_op_capacity);
|
|
aligned_vector_reserve(&PT_LIST.vector, config->initial_pt_capacity);
|
|
aligned_vector_reserve(&TR_LIST.vector, config->initial_tr_capacity);
|
|
}
|
|
|
|
void APIENTRY glKosInit() {
|
|
GLdcConfig config;
|
|
glKosInitConfig(&config);
|
|
glKosInitEx(&config);
|
|
}
|
|
|
|
#define QACRTA ((((unsigned int)0x10000000)>>26)<<2)&0x1c
|
|
|
|
void APIENTRY glKosSwapBuffers() {
|
|
static int frame_count = 0;
|
|
|
|
TRACE();
|
|
|
|
profiler_push(__func__);
|
|
|
|
pvr_wait_ready();
|
|
|
|
pvr_scene_begin();
|
|
QACR0 = QACRTA;
|
|
QACR1 = QACRTA;
|
|
|
|
pvr_list_begin(PVR_LIST_OP_POLY);
|
|
pvr_list_submit(OP_LIST.vector.data, OP_LIST.vector.size);
|
|
pvr_list_finish();
|
|
|
|
pvr_list_begin(PVR_LIST_PT_POLY);
|
|
pvr_list_submit(PT_LIST.vector.data, PT_LIST.vector.size);
|
|
pvr_list_finish();
|
|
|
|
pvr_list_begin(PVR_LIST_TR_POLY);
|
|
pvr_list_submit(TR_LIST.vector.data, TR_LIST.vector.size);
|
|
pvr_list_finish();
|
|
pvr_scene_finish();
|
|
|
|
aligned_vector_clear(&OP_LIST.vector);
|
|
aligned_vector_clear(&PT_LIST.vector);
|
|
aligned_vector_clear(&TR_LIST.vector);
|
|
|
|
profiler_checkpoint("scene");
|
|
profiler_pop();
|
|
|
|
if(frame_count++ > 100) {
|
|
profiler_print_stats();
|
|
frame_count = 0;
|
|
}
|
|
}
|