Compare commits

..

4 Commits

Author SHA1 Message Date
a1d0ea3232 updating utils 2023-10-04 16:04:08 +08:00
02e3a46700 adding tortoise utils 2023-09-10 23:45:45 +08:00
79154ac651 adding inference_utils 2023-09-09 17:46:40 +08:00
6bae8c6a8c removing venv setup 2023-09-07 19:19:27 +08:00
12 changed files with 159 additions and 62 deletions

2
Dockerfile Executable file → Normal file
View File

@ -20,7 +20,7 @@ ENV PATH="$HOME/miniconda/bin:$PATH"
RUN conda init
RUN conda install python=$PYTHON_VERSION
RUN python3 -m pip install --upgrade pip
RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
RUN pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118
RUN mkdir $HOME/ai-voice-cloning
WORKDIR $HOME/ai-voice-cloning

View File

@ -1,6 +1,6 @@
# AI Voice Cloning
> **Note** This project is effectively abandonware due to requiring a rewrite. Please use [JarodMica/ai-voice-cloning](https://github.com/JarodMica/ai-voice-cloning).
> **Note** This project has been in dire need of being rewritten from the ground up for some time. Apologies for any crust from my rather spaghetti code.
This [repo](https://git.ecker.tech/mrq/ai-voice-cloning)/[rentry](https://rentry.org/AI-Voice-Cloning/) aims to serve as both a foolproof guide for setting up AI voice cloning tools for legitimate, local use on Windows/Linux, as well as a stepping stone for anons that genuinely want to play around with [TorToiSe](https://github.com/neonbjb/tortoise-tts).
@ -16,4 +16,4 @@ Please consult [the wiki](https://git.ecker.tech/mrq/ai-voice-cloning/wiki) for
## Bug Reporting
If you run into any problems, please refer to the [issues you may encounter](https://git.ecker.tech/mrq/ai-voice-cloning/wiki/Issues) wiki page first.
If you run into any problems, please refer to the [issues you may encounter](https://git.ecker.tech/mrq/ai-voice-cloning/wiki/Issues) wiki page first.

0
__init__.py Normal file
View File

71
inference_utils.py Normal file
View File

@ -0,0 +1,71 @@
import re
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_voice
def clean_text(text: str, target_len: int = 200, max_len: int = 300) -> list[str]:
# remove double new line, redundant whitespace, convert non-ascii quotes to ascii quotes
text = re.sub(r"\n\n+", r"\n", text)
text = re.sub(r"\s+", r" ", text)
text = re.sub(r"[“”]", '"', text)
# split text into sentences, keep quotes together
sentences = re.split(r'(?<=[.!?])\s+(?=(?:[^"]*"[^"]*")*[^"]*$)', text)
# recombine sentences into chunks of desired length
chunks = []
chunk = ""
for sentence in sentences:
if len(chunk) + len(sentence) > target_len:
chunks.append(chunk)
chunk = ""
chunk += sentence + " "
if len(chunk) > max_len:
chunks.append(chunk)
chunk = ""
if chunk:
chunks.append(chunk)
# clean up chunks, remove leading/trailing whitespace, remove empty/unless chunks
chunks = [s.strip() for s in chunks]
chunks = [s for s in chunks if s and not re.match(r"^[\s\.,;:!?]*$", s)]
return chunks
def process_textfile(file_path: str) -> list[str]:
with open(file_path, "r", encoding="utf-8") as f:
text = " ".join([l for l in f.readlines()])
text = clean_text(text)
return text
def tts(paper_name: str):
# load tts model
tts = TextToSpeech(
autoregressive_model_path="./ai-voice-cloning/training/GlaDOS/finetune/models/5304_gpt.pth"
)
voice = "GlaDOS"
voice_samples, conditioning_latents = load_voice(
voice, extra_voice_dirs="./ai-voice-cloning/voices"
)
# process text file
texts = process_textfile(f"./llm/scripts/{paper_name}.txt")
# generate audio for each chunk of text
all_audio_chunks = []
for i, text in enumerate(texts):
gen = tts.tts(
text=text,
voice=voice,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
)
torchaudio.save(f"./audio/raw/{i}.wav", gen.squeeze(0).cpu(), 24000)
all_audio_chunks.append(gen)
# concatenate all audio chunks
full_audio = torch.cat(all_audio_chunks, dim=-1)
torchaudio.save(f"./audio/raw/{paper_name}.wav", full_audio, 24000)
print("here")

@ -1 +1 @@
Subproject commit bf3b6c87aa825295f64a31d010fd5e896fbcda43
Subproject commit b10c58436d6871c26485d30b203e6cfdd4167602

View File

@ -38,24 +38,10 @@
],
"source":[
"!apt install python3.10-venv\n",
"!apt install python3.8-venv\n",
"!git clone https://git.ecker.tech/mrq/ai-voice-cloning/\n",
"%cd /content/ai-voice-cloning\n",
"# get local dependencies\n",
"!git submodule init\n",
"!git submodule update --remote\n",
"# setup venv\n",
"!python3 -m venv venv\n",
"!source ./venv/bin/activate\n",
"!python3 -m pip install --upgrade pip # just to be safe\n",
"# CUDA\n",
"!pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118\n",
"# install requirements\n",
"!python3 -m pip install -r ./modules/tortoise-tts/requirements.txt # install TorToiSe requirements\n",
"!python3 -m pip install -e ./modules/tortoise-tts/ # install TorToiSe\n",
"!python3 -m pip install -r ./modules/dlas/requirements.txt # instal DLAS requirements, last, because whisperx will break a dependency here\n",
"!python3 -m pip install -e ./modules/dlas/ # install DLAS\n",
"!python3 -m pip install -r ./requirements.txt # install local requirements"
"!./setup-cuda.sh"
]
},
{
@ -129,8 +115,7 @@
"cell_type":"code",
"source":[
"%cd /content/ai-voice-cloning/\n",
"!source ./venv/bin/activate\n",
"!python3 ./src/main.py --share"
"!./start.sh --share"
],
"metadata":{
"id":"QRA8jF3cF-YJ"

View File

@ -1,9 +1,5 @@
--extra-index-url https://download.pytorch.org/whl/cu118
torch>=2.1.0
torchvision
torchaudio
git+https://github.com/openai/whisper.git
openai-whisper
more-itertools
ffmpeg-python
gradio<=3.23.0
@ -12,6 +8,4 @@ voicefixer
psutil
phonemizer
pydantic==1.10.11
websockets
beartype==0.15.0
pykakasi
websockets

View File

@ -4,7 +4,7 @@ git submodule update --remote
python -m venv venv
call .\venv\Scripts\activate.bat
python -m pip install --upgrade pip
python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
python -m pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118
python -m pip install -r .\modules\tortoise-tts\requirements.txt
python -m pip install -e .\modules\tortoise-tts\
python -m pip install -r .\modules\dlas\requirements.txt

View File

@ -2,12 +2,8 @@
# get local dependencies
git submodule init
git submodule update --remote
# setup venv
python3 -m venv venv
source ./venv/bin/activate
python3 -m pip install --upgrade pip # just to be safe
# CUDA
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118
# install requirements
python3 -m pip install -r ./modules/tortoise-tts/requirements.txt # install TorToiSe requirements
python3 -m pip install -e ./modules/tortoise-tts/ # install TorToiSe
@ -15,6 +11,4 @@ python3 -m pip install -r ./modules/dlas/requirements.txt # instal DLAS requirem
python3 -m pip install -e ./modules/dlas/ # install DLAS
python3 -m pip install -r ./requirements.txt # install local requirements
rm *.bat
deactivate
rm *.bat

View File

@ -7,7 +7,7 @@ python3 -m venv venv
source ./venv/bin/activate
python3 -m pip install --upgrade pip # just to be safe
# ROCM
pip3 install torch==1.13.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.2 # 5.4.2 doesn't work for me desu
pip3 install torch==1.13.1 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/rocm5.2 # 5.4.2 doesn't work for me desu
# install requirements
python3 -m pip install -r ./modules/tortoise-tts/requirements.txt # install TorToiSe requirements
python3 -m pip install -e ./modules/tortoise-tts/ # install TorToiSe

View File

@ -68,20 +68,8 @@ BARK_ENABLED = False
VERBOSE_DEBUG = True
KKS = None
PYKAKASI_ENABLED = False
import traceback
try:
import pykakasi
KKS = pykakasi.kakasi()
PYKAKASI_ENABLED = True
except Exception as e:
#if VERBOSE_DEBUG:
# print(traceback.format_exc())
pass
try:
from whisper.normalizers.english import EnglishTextNormalizer
from whisper.normalizers.basic import BasicTextNormalizer
@ -2677,8 +2665,8 @@ def prepare_dataset( voice, use_segments=False, text_length=0, audio_length=0, p
culled = len(text) < text_length
if not culled and audio_length > 0:
culled = duration < audio_length
#if not culled and audio_length > 0:
# culled = duration < audio_length
line = f'audio/{file}|{phonemes if phonemize and phonemes else text}'
@ -2746,14 +2734,6 @@ def prepare_dataset( voice, use_segments=False, text_length=0, audio_length=0, p
phn_file = jobs['phonemize'][0][i]
normalized = jobs['phonemize'][1][i]
if language == "japanese":
language = "ja"
if language == "ja" and PYKAKASI_ENABLED and KKS is not None:
normalized = KKS.convert(normalized)
normalized = [ n["hira"] for n in normalized ]
normalized = "".join(normalized)
try:
phonemized = valle_phonemize( normalized )
open(phn_file, 'w', encoding='utf-8').write(" ".join(phonemized))

73
tortoise_utils.py Normal file
View File

@ -0,0 +1,73 @@
import re
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_voice
def clean_text(text: str, target_len: int = 200, max_len: int = 300) -> list[str]:
# remove double new line, redundant whitespace, convert non-ascii quotes to ascii quotes
text = re.sub(r"\n\n+", r"\n", text)
text = re.sub(r"\s+", r" ", text)
text = re.sub(r"[“”]", '"', text)
# split text into sentences, keep quotes together
sentences = re.split(r'(?<=[.!?])\s+(?=(?:[^"]*"[^"]*")*[^"]*$)', text)
# recombine sentences into chunks of desired length
chunks = []
chunk = ""
for sentence in sentences:
if len(chunk) + len(sentence) > target_len:
chunks.append(chunk)
chunk = ""
chunk += sentence + " "
if len(chunk) > max_len:
chunks.append(chunk)
chunk = ""
if chunk:
chunks.append(chunk)
# clean up chunks, remove leading/trailing whitespace, remove empty/unless chunks
chunks = [s.strip() for s in chunks]
chunks = [s for s in chunks if s and not re.match(r"^[\s\.,;:!?]*$", s)]
return chunks
def process_textfile(file_path: str) -> list[str]:
with open(file_path, "r", encoding="utf-8") as f:
text = " ".join([l for l in f.readlines()])
text = clean_text(text)
return text
def tts(file_path: str):
# load tts model
# ADD PATH
tts = TextToSpeech(
autoregressive_model_path="./ai-voice-cloning/training/"
)
voice = "Lex"
voice_samples, conditioning_latents = load_voice(
voice, extra_voice_dirs="./ai-voice-cloning/voices"
)
# process text file
texts = process_textfile(file_path)
# generate audio for each chunk of text
all_audio_chunks = []
for i, text in enumerate(texts):
gen = tts.tts(
text=text,
voice=voice,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
)
torchaudio.save(f"./audio/raw/{i}.wav", gen.squeeze(0).cpu(), 24000)
all_audio_chunks.append(gen)
book_name_ext = os.path.basename(file_path)
paper_name = os.path.splitext(book_name_ext)[0]
# concatenate all audio chunks
full_audio = torch.cat(all_audio_chunks, dim=-1)
torchaudio.save(f"./audio/raw/{paper_name}.wav", full_audio, 24000)