Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
a1d0ea3232 | |||
02e3a46700 | |||
79154ac651 | |||
6bae8c6a8c |
2
Dockerfile
Executable file → Normal file
2
Dockerfile
Executable file → Normal file
|
@ -20,7 +20,7 @@ ENV PATH="$HOME/miniconda/bin:$PATH"
|
|||
RUN conda init
|
||||
RUN conda install python=$PYTHON_VERSION
|
||||
RUN python3 -m pip install --upgrade pip
|
||||
RUN pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
|
||||
RUN pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118
|
||||
|
||||
RUN mkdir $HOME/ai-voice-cloning
|
||||
WORKDIR $HOME/ai-voice-cloning
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# AI Voice Cloning
|
||||
|
||||
> **Note** This project is effectively abandonware due to requiring a rewrite. Please use [JarodMica/ai-voice-cloning](https://github.com/JarodMica/ai-voice-cloning).
|
||||
> **Note** This project has been in dire need of being rewritten from the ground up for some time. Apologies for any crust from my rather spaghetti code.
|
||||
|
||||
This [repo](https://git.ecker.tech/mrq/ai-voice-cloning)/[rentry](https://rentry.org/AI-Voice-Cloning/) aims to serve as both a foolproof guide for setting up AI voice cloning tools for legitimate, local use on Windows/Linux, as well as a stepping stone for anons that genuinely want to play around with [TorToiSe](https://github.com/neonbjb/tortoise-tts).
|
||||
|
||||
|
|
0
__init__.py
Normal file
0
__init__.py
Normal file
71
inference_utils.py
Normal file
71
inference_utils.py
Normal file
|
@ -0,0 +1,71 @@
|
|||
import re
|
||||
from tortoise.api import TextToSpeech
|
||||
from tortoise.utils.audio import load_voice
|
||||
|
||||
def clean_text(text: str, target_len: int = 200, max_len: int = 300) -> list[str]:
|
||||
# remove double new line, redundant whitespace, convert non-ascii quotes to ascii quotes
|
||||
text = re.sub(r"\n\n+", r"\n", text)
|
||||
text = re.sub(r"\s+", r" ", text)
|
||||
text = re.sub(r"[“”]", '"', text)
|
||||
|
||||
# split text into sentences, keep quotes together
|
||||
sentences = re.split(r'(?<=[.!?])\s+(?=(?:[^"]*"[^"]*")*[^"]*$)', text)
|
||||
|
||||
# recombine sentences into chunks of desired length
|
||||
chunks = []
|
||||
chunk = ""
|
||||
for sentence in sentences:
|
||||
if len(chunk) + len(sentence) > target_len:
|
||||
chunks.append(chunk)
|
||||
chunk = ""
|
||||
chunk += sentence + " "
|
||||
if len(chunk) > max_len:
|
||||
chunks.append(chunk)
|
||||
chunk = ""
|
||||
if chunk:
|
||||
chunks.append(chunk)
|
||||
|
||||
# clean up chunks, remove leading/trailing whitespace, remove empty/unless chunks
|
||||
chunks = [s.strip() for s in chunks]
|
||||
chunks = [s for s in chunks if s and not re.match(r"^[\s\.,;:!?]*$", s)]
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
def process_textfile(file_path: str) -> list[str]:
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
text = " ".join([l for l in f.readlines()])
|
||||
text = clean_text(text)
|
||||
return text
|
||||
|
||||
def tts(paper_name: str):
|
||||
# load tts model
|
||||
tts = TextToSpeech(
|
||||
autoregressive_model_path="./ai-voice-cloning/training/GlaDOS/finetune/models/5304_gpt.pth"
|
||||
)
|
||||
voice = "GlaDOS"
|
||||
voice_samples, conditioning_latents = load_voice(
|
||||
voice, extra_voice_dirs="./ai-voice-cloning/voices"
|
||||
)
|
||||
|
||||
# process text file
|
||||
texts = process_textfile(f"./llm/scripts/{paper_name}.txt")
|
||||
|
||||
# generate audio for each chunk of text
|
||||
all_audio_chunks = []
|
||||
for i, text in enumerate(texts):
|
||||
gen = tts.tts(
|
||||
text=text,
|
||||
voice=voice,
|
||||
voice_samples=voice_samples,
|
||||
conditioning_latents=conditioning_latents,
|
||||
)
|
||||
torchaudio.save(f"./audio/raw/{i}.wav", gen.squeeze(0).cpu(), 24000)
|
||||
|
||||
all_audio_chunks.append(gen)
|
||||
|
||||
# concatenate all audio chunks
|
||||
full_audio = torch.cat(all_audio_chunks, dim=-1)
|
||||
torchaudio.save(f"./audio/raw/{paper_name}.wav", full_audio, 24000)
|
||||
|
||||
print("here")
|
|
@ -1 +1 @@
|
|||
Subproject commit bf3b6c87aa825295f64a31d010fd5e896fbcda43
|
||||
Subproject commit b10c58436d6871c26485d30b203e6cfdd4167602
|
|
@ -38,24 +38,10 @@
|
|||
|
||||
],
|
||||
"source":[
|
||||
"!apt install python3.10-venv\n",
|
||||
"!apt install python3.8-venv\n",
|
||||
"!git clone https://git.ecker.tech/mrq/ai-voice-cloning/\n",
|
||||
"%cd /content/ai-voice-cloning\n",
|
||||
"# get local dependencies\n",
|
||||
"!git submodule init\n",
|
||||
"!git submodule update --remote\n",
|
||||
"# setup venv\n",
|
||||
"!python3 -m venv venv\n",
|
||||
"!source ./venv/bin/activate\n",
|
||||
"!python3 -m pip install --upgrade pip # just to be safe\n",
|
||||
"# CUDA\n",
|
||||
"!pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118\n",
|
||||
"# install requirements\n",
|
||||
"!python3 -m pip install -r ./modules/tortoise-tts/requirements.txt # install TorToiSe requirements\n",
|
||||
"!python3 -m pip install -e ./modules/tortoise-tts/ # install TorToiSe\n",
|
||||
"!python3 -m pip install -r ./modules/dlas/requirements.txt # instal DLAS requirements, last, because whisperx will break a dependency here\n",
|
||||
"!python3 -m pip install -e ./modules/dlas/ # install DLAS\n",
|
||||
"!python3 -m pip install -r ./requirements.txt # install local requirements"
|
||||
"!./setup-cuda.sh"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -129,8 +115,7 @@
|
|||
"cell_type":"code",
|
||||
"source":[
|
||||
"%cd /content/ai-voice-cloning/\n",
|
||||
"!source ./venv/bin/activate\n",
|
||||
"!python3 ./src/main.py --share"
|
||||
"!./start.sh --share"
|
||||
],
|
||||
"metadata":{
|
||||
"id":"QRA8jF3cF-YJ"
|
||||
|
|
|
@ -1,9 +1,5 @@
|
|||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
torch>=2.1.0
|
||||
torchvision
|
||||
torchaudio
|
||||
git+https://github.com/openai/whisper.git
|
||||
|
||||
openai-whisper
|
||||
more-itertools
|
||||
ffmpeg-python
|
||||
gradio<=3.23.0
|
||||
|
@ -13,5 +9,3 @@ psutil
|
|||
phonemizer
|
||||
pydantic==1.10.11
|
||||
websockets
|
||||
beartype==0.15.0
|
||||
pykakasi
|
|
@ -4,7 +4,7 @@ git submodule update --remote
|
|||
python -m venv venv
|
||||
call .\venv\Scripts\activate.bat
|
||||
python -m pip install --upgrade pip
|
||||
python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
|
||||
python -m pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118
|
||||
python -m pip install -r .\modules\tortoise-tts\requirements.txt
|
||||
python -m pip install -e .\modules\tortoise-tts\
|
||||
python -m pip install -r .\modules\dlas\requirements.txt
|
||||
|
|
|
@ -2,12 +2,8 @@
|
|||
# get local dependencies
|
||||
git submodule init
|
||||
git submodule update --remote
|
||||
# setup venv
|
||||
python3 -m venv venv
|
||||
source ./venv/bin/activate
|
||||
python3 -m pip install --upgrade pip # just to be safe
|
||||
# CUDA
|
||||
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
|
||||
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118
|
||||
# install requirements
|
||||
python3 -m pip install -r ./modules/tortoise-tts/requirements.txt # install TorToiSe requirements
|
||||
python3 -m pip install -e ./modules/tortoise-tts/ # install TorToiSe
|
||||
|
@ -16,5 +12,3 @@ python3 -m pip install -e ./modules/dlas/ # install DLAS
|
|||
python3 -m pip install -r ./requirements.txt # install local requirements
|
||||
|
||||
rm *.bat
|
||||
|
||||
deactivate
|
|
@ -7,7 +7,7 @@ python3 -m venv venv
|
|||
source ./venv/bin/activate
|
||||
python3 -m pip install --upgrade pip # just to be safe
|
||||
# ROCM
|
||||
pip3 install torch==1.13.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.2 # 5.4.2 doesn't work for me desu
|
||||
pip3 install torch==1.13.1 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/rocm5.2 # 5.4.2 doesn't work for me desu
|
||||
# install requirements
|
||||
python3 -m pip install -r ./modules/tortoise-tts/requirements.txt # install TorToiSe requirements
|
||||
python3 -m pip install -e ./modules/tortoise-tts/ # install TorToiSe
|
||||
|
|
24
src/utils.py
24
src/utils.py
|
@ -68,20 +68,8 @@ BARK_ENABLED = False
|
|||
|
||||
VERBOSE_DEBUG = True
|
||||
|
||||
KKS = None
|
||||
PYKAKASI_ENABLED = False
|
||||
|
||||
import traceback
|
||||
|
||||
try:
|
||||
import pykakasi
|
||||
KKS = pykakasi.kakasi()
|
||||
PYKAKASI_ENABLED = True
|
||||
except Exception as e:
|
||||
#if VERBOSE_DEBUG:
|
||||
# print(traceback.format_exc())
|
||||
pass
|
||||
|
||||
try:
|
||||
from whisper.normalizers.english import EnglishTextNormalizer
|
||||
from whisper.normalizers.basic import BasicTextNormalizer
|
||||
|
@ -2677,8 +2665,8 @@ def prepare_dataset( voice, use_segments=False, text_length=0, audio_length=0, p
|
|||
|
||||
|
||||
culled = len(text) < text_length
|
||||
if not culled and audio_length > 0:
|
||||
culled = duration < audio_length
|
||||
#if not culled and audio_length > 0:
|
||||
# culled = duration < audio_length
|
||||
|
||||
line = f'audio/{file}|{phonemes if phonemize and phonemes else text}'
|
||||
|
||||
|
@ -2746,14 +2734,6 @@ def prepare_dataset( voice, use_segments=False, text_length=0, audio_length=0, p
|
|||
phn_file = jobs['phonemize'][0][i]
|
||||
normalized = jobs['phonemize'][1][i]
|
||||
|
||||
if language == "japanese":
|
||||
language = "ja"
|
||||
|
||||
if language == "ja" and PYKAKASI_ENABLED and KKS is not None:
|
||||
normalized = KKS.convert(normalized)
|
||||
normalized = [ n["hira"] for n in normalized ]
|
||||
normalized = "".join(normalized)
|
||||
|
||||
try:
|
||||
phonemized = valle_phonemize( normalized )
|
||||
open(phn_file, 'w', encoding='utf-8').write(" ".join(phonemized))
|
||||
|
|
73
tortoise_utils.py
Normal file
73
tortoise_utils.py
Normal file
|
@ -0,0 +1,73 @@
|
|||
import re
|
||||
from tortoise.api import TextToSpeech
|
||||
from tortoise.utils.audio import load_voice
|
||||
|
||||
def clean_text(text: str, target_len: int = 200, max_len: int = 300) -> list[str]:
|
||||
# remove double new line, redundant whitespace, convert non-ascii quotes to ascii quotes
|
||||
text = re.sub(r"\n\n+", r"\n", text)
|
||||
text = re.sub(r"\s+", r" ", text)
|
||||
text = re.sub(r"[“”]", '"', text)
|
||||
|
||||
# split text into sentences, keep quotes together
|
||||
sentences = re.split(r'(?<=[.!?])\s+(?=(?:[^"]*"[^"]*")*[^"]*$)', text)
|
||||
|
||||
# recombine sentences into chunks of desired length
|
||||
chunks = []
|
||||
chunk = ""
|
||||
for sentence in sentences:
|
||||
if len(chunk) + len(sentence) > target_len:
|
||||
chunks.append(chunk)
|
||||
chunk = ""
|
||||
chunk += sentence + " "
|
||||
if len(chunk) > max_len:
|
||||
chunks.append(chunk)
|
||||
chunk = ""
|
||||
if chunk:
|
||||
chunks.append(chunk)
|
||||
|
||||
# clean up chunks, remove leading/trailing whitespace, remove empty/unless chunks
|
||||
chunks = [s.strip() for s in chunks]
|
||||
chunks = [s for s in chunks if s and not re.match(r"^[\s\.,;:!?]*$", s)]
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
def process_textfile(file_path: str) -> list[str]:
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
text = " ".join([l for l in f.readlines()])
|
||||
text = clean_text(text)
|
||||
return text
|
||||
|
||||
def tts(file_path: str):
|
||||
# load tts model
|
||||
# ADD PATH
|
||||
tts = TextToSpeech(
|
||||
autoregressive_model_path="./ai-voice-cloning/training/"
|
||||
)
|
||||
voice = "Lex"
|
||||
voice_samples, conditioning_latents = load_voice(
|
||||
voice, extra_voice_dirs="./ai-voice-cloning/voices"
|
||||
)
|
||||
|
||||
# process text file
|
||||
texts = process_textfile(file_path)
|
||||
|
||||
# generate audio for each chunk of text
|
||||
all_audio_chunks = []
|
||||
for i, text in enumerate(texts):
|
||||
gen = tts.tts(
|
||||
text=text,
|
||||
voice=voice,
|
||||
voice_samples=voice_samples,
|
||||
conditioning_latents=conditioning_latents,
|
||||
)
|
||||
torchaudio.save(f"./audio/raw/{i}.wav", gen.squeeze(0).cpu(), 24000)
|
||||
|
||||
all_audio_chunks.append(gen)
|
||||
|
||||
book_name_ext = os.path.basename(file_path)
|
||||
paper_name = os.path.splitext(book_name_ext)[0]
|
||||
|
||||
# concatenate all audio chunks
|
||||
full_audio = torch.cat(all_audio_chunks, dim=-1)
|
||||
torchaudio.save(f"./audio/raw/{paper_name}.wav", full_audio, 24000)
|
Loading…
Reference in New Issue
Block a user