From 7b8cf348c8fa421cd6d51a8ebd9bbce1832e0c80 Mon Sep 17 00:00:00 2001 From: Jarod Mica Date: Sun, 26 Nov 2023 18:45:56 -0800 Subject: [PATCH 1/2] editted utils and webui for hifigan --- src/utils.py | 50 ++++++++++++++++++++++++++++++++++++++++---------- src/webui.py | 1 + 2 files changed, 41 insertions(+), 10 deletions(-) diff --git a/src/utils.py b/src/utils.py index 287c909..eb4e122 100755 --- a/src/utils.py +++ b/src/utils.py @@ -38,6 +38,7 @@ from datetime import datetime from datetime import timedelta from tortoise.api import TextToSpeech as TorToise_TTS, MODELS, get_model_path, pad_or_truncate +from tortoise.api_fast import TextToSpeech as Toroise_TTS_Hifi from tortoise.utils.audio import load_audio, load_voice, load_voices, get_voice_dir, get_voices from tortoise.utils.text import split_and_recombine_text from tortoise.utils.device import get_device_name, set_device_name, get_device_count, get_device_vram, get_device_batch_size, do_gc @@ -1073,10 +1074,11 @@ def generate_tortoise(**kwargs): settings['autoregressive_model'] = deduce_autoregressive_model(selected_voice) tts.load_autoregressive_model(settings['autoregressive_model']) - if settings['diffusion_model'] is not None: - if settings['diffusion_model'] == "auto": - settings['diffusion_model'] = deduce_diffusion_model(selected_voice) - tts.load_diffusion_model(settings['diffusion_model']) + if not args.use_hifigan: + if settings['diffusion_model'] is not None: + if settings['diffusion_model'] == "auto": + settings['diffusion_model'] = deduce_diffusion_model(selected_voice) + tts.load_diffusion_model(settings['diffusion_model']) if settings['tokenizer_json'] is not None: tts.load_tokenizer_json(settings['tokenizer_json']) @@ -1180,7 +1182,9 @@ def generate_tortoise(**kwargs): latents_path = f'{dir}/cond_latents_{model_hash}.pth' if voice == "random" or voice == "microphone": - if latents and settings is not None and settings['conditioning_latents']: + # if latents and settings is not None and settings['conditioning_latents']: + if latents and settings is not None and torch.any(settings['conditioning_latents']): + os.makedirs(dir, exist_ok=True) torch.save(conditioning_latents, latents_path) @@ -1220,9 +1224,16 @@ def generate_tortoise(**kwargs): raise Exception("Prompt settings editing requested, but received invalid JSON") settings = get_settings( override=override ) - gen, additionals = tts.tts(cut_text, **settings ) - - parameters['seed'] = additionals[0] + print(settings) + try: + if args.use_hifigan: + gen = tts.tts(cut_text, **settings) + else: + gen, additionals = tts.tts(cut_text, **settings ) + parameters['seed'] = additionals[0] + except Exception as e: + raise RuntimeError(f'Possible latent mismatch: click the "(Re)Compute Voice Latents" button and then try again. Error: {e}') + run_time = time.time()-start_time print(f"Generating line took {run_time} seconds") @@ -3293,6 +3304,7 @@ def setup_args(cli=False): 'latents-lean-and-mean': True, 'voice-fixer': False, # getting tired of long initialization times in a Colab for downloading a large dataset for it 'use-deepspeed': False, + 'use-hifigan': False, 'voice-fixer-use-cuda': True, @@ -3352,6 +3364,8 @@ def setup_args(cli=False): parser.add_argument("--voice-fixer", action='store_true', default=default_arguments['voice-fixer'], help="Uses python module 'voicefixer' to improve audio quality, if available.") parser.add_argument("--voice-fixer-use-cuda", action='store_true', default=default_arguments['voice-fixer-use-cuda'], help="Hints to voicefixer to use CUDA, if available.") parser.add_argument("--use-deepspeed", action='store_true', default=default_arguments['use-deepspeed'], help="Use deepspeed for speed bump.") + parser.add_argument("--use-hifigan", action='store_true', default=default_arguments['use-hifigan'], help="Use Hifigan instead of Diffusion") + parser.add_argument("--force-cpu-for-conditioning-latents", default=default_arguments['force-cpu-for-conditioning-latents'], action='store_true', help="Forces computing conditional latents to be done on the CPU (if you constantyl OOM on low chunk counts)") parser.add_argument("--defer-tts-load", default=default_arguments['defer-tts-load'], action='store_true', help="Defers loading TTS model") parser.add_argument("--prune-nonfinal-outputs", default=default_arguments['prune-nonfinal-outputs'], action='store_true', help="Deletes non-final output files on completing a generation") @@ -3437,6 +3451,7 @@ def get_default_settings( hypenated=True ): 'latents-lean-and-mean': args.latents_lean_and_mean, 'voice-fixer': args.voice_fixer, 'use-deepspeed': args.use_deepspeed, + 'use-hifigan': args.use_hifigan, 'voice-fixer-use-cuda': args.voice_fixer_use_cuda, 'concurrency-count': args.concurrency_count, 'output-sample-rate': args.output_sample_rate, @@ -3491,6 +3506,7 @@ def update_args( **kwargs ): args.voice_fixer = settings['voice_fixer'] args.voice_fixer_use_cuda = settings['voice_fixer_use_cuda'] args.use_deepspeed = settings['use_deepspeed'] + args.use_hifigan = settings['use_hifigan'] args.concurrency_count = settings['concurrency_count'] args.output_sample_rate = 44000 args.autocalculate_voice_chunk_duration_size = settings['autocalculate_voice_chunk_duration_size'] @@ -3662,8 +3678,22 @@ def load_tts( restart=False, if get_device_name() == "cpu": print("!!!! WARNING !!!! No GPU available in PyTorch. You may need to reinstall PyTorch.") - print(f"Loading TorToiSe... (AR: {autoregressive_model}, diffusion: {diffusion_model}, vocoder: {vocoder_model})") - tts = TorToise_TTS(minor_optimizations=not args.low_vram, autoregressive_model_path=autoregressive_model, diffusion_model_path=diffusion_model, vocoder_model=vocoder_model, tokenizer_json=tokenizer_json, unsqueeze_sample_batches=args.unsqueeze_sample_batches, use_deepspeed=args.use_deepspeed) + + if args.use_hifigan: + print("Loading Tortoise with Hifigan") + tts = Toroise_TTS_Hifi(autoregressive_model_path=autoregressive_model, + tokenizer_json=tokenizer_json, + use_deepspeed=args.use_deepspeed) + else: + print(f"Loading TorToiSe... (AR: {autoregressive_model}, diffusion: {diffusion_model}, vocoder: {vocoder_model})") + tts = TorToise_TTS(minor_optimizations=not args.low_vram, + autoregressive_model_path=autoregressive_model, + diffusion_model_path=diffusion_model, + vocoder_model=vocoder_model, + tokenizer_json=tokenizer_json, + unsqueeze_sample_batches=args.unsqueeze_sample_batches, + use_deepspeed=args.use_deepspeed) + elif args.tts_backend == "vall-e": if valle_model: args.valle_model = valle_model diff --git a/src/webui.py b/src/webui.py index 560453d..68b4ccf 100755 --- a/src/webui.py +++ b/src/webui.py @@ -644,6 +644,7 @@ def setup_gradio(): EXEC_SETTINGS['latents_lean_and_mean'] = gr.Checkbox(label="Slimmer Computed Latents", value=args.latents_lean_and_mean) EXEC_SETTINGS['voice_fixer'] = gr.Checkbox(label="Use Voice Fixer on Generated Output", value=args.voice_fixer) EXEC_SETTINGS['use_deepspeed'] = gr.Checkbox(label="Use DeepSpeed for Speed Bump.", value=args.use_deepspeed) + EXEC_SETTINGS['use_hifigan'] = gr.Checkbox(label="Use Hifigan instead of Diffusion.", value=args.use_hifigan) EXEC_SETTINGS['voice_fixer_use_cuda'] = gr.Checkbox(label="Use CUDA for Voice Fixer", value=args.voice_fixer_use_cuda) EXEC_SETTINGS['force_cpu_for_conditioning_latents'] = gr.Checkbox(label="Force CPU for Conditioning Latents", value=args.force_cpu_for_conditioning_latents) EXEC_SETTINGS['defer_tts_load'] = gr.Checkbox(label="Do Not Load TTS On Startup", value=args.defer_tts_load) -- 2.45.2 From 7274899d885ccd98d386835615c7c51eb5e12a63 Mon Sep 17 00:00:00 2001 From: Jarod Mica Date: Sun, 26 Nov 2023 22:52:22 -0800 Subject: [PATCH 2/2] Fix random voice in utils.py --- src/utils.py | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/src/utils.py b/src/utils.py index eb4e122..a0f0588 100755 --- a/src/utils.py +++ b/src/utils.py @@ -1182,11 +1182,14 @@ def generate_tortoise(**kwargs): latents_path = f'{dir}/cond_latents_{model_hash}.pth' if voice == "random" or voice == "microphone": - # if latents and settings is not None and settings['conditioning_latents']: - if latents and settings is not None and torch.any(settings['conditioning_latents']): - - os.makedirs(dir, exist_ok=True) - torch.save(conditioning_latents, latents_path) + if args.use_hifigan: + if latents and settings is not None and torch.any(settings['conditioning_latents']): + os.makedirs(dir, exist_ok=True) + torch.save(conditioning_latents, latents_path) + else: + if latents and settings is not None and settings['conditioning_latents']: + os.makedirs(dir, exist_ok=True) + torch.save(conditioning_latents, latents_path) if latents_path and os.path.exists(latents_path): try: -- 2.45.2