28 lines
772 B
Python
28 lines
772 B
Python
|
import torch
|
||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
|
||
|
MAX_NEW_TOKENS = 128
|
||
|
model_name = 'decapoda-research/llama-7b-hf'
|
||
|
|
||
|
text = 'Hamburg is in which country?\n'
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||
|
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
||
|
|
||
|
free_in_GB = int(torch.cuda.mem_get_info()[0]/1024**3)
|
||
|
max_memory = f'{int(torch.cuda.mem_get_info()[0]/1024**3)-2}GB'
|
||
|
|
||
|
n_gpus = torch.cuda.device_count()
|
||
|
max_memory = {i: max_memory for i in range(n_gpus)}
|
||
|
|
||
|
model = AutoModelForCausalLM.from_pretrained(
|
||
|
model_name,
|
||
|
device_map='auto',
|
||
|
load_in_8bit=True,
|
||
|
max_memory=max_memory
|
||
|
)
|
||
|
generated_ids = model.generate(input_ids, max_length=MAX_NEW_TOKENS)
|
||
|
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
||
|
|
||
|
|
||
|
|