The bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers, matrix multiplication (LLM.int8()), and quantization functions.
- [LLM.int8() Paper](https://arxiv.org/abs/2208.07339) -- [LLM.int8() Software Blog Post](https://huggingface.co/blog/hf-bitsandbytes-integration) -- [LLM.int8() Emergent Features Blog Post](https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/)
The requirements can best be fulfilled by installing pytorch via anaconda. You can install PyTorch by following the ["Get Started"](https://pytorch.org/get-started/locally/) instructions on the official website.
For straight Int8 matrix multiplication with mixed precision decomposition you can use ``bnb.matmul(...)``. To enable mixed precision decomposition, use the threshold parameter:
For instructions how to use LLM.int8() inference layers in your own code, see the TL;DR above or for extended instruction see [this blog post](https://github.com/huggingface/transformers).
With bitsandbytes 8-bit optimizers can be used by changing a single line of code in your codebase. For NLP models we recommend also to use the StableEmbedding layers (see below) which improves results and helps with stable 8-bit optimization. To get started with 8-bit optimizers, it is sufficient to replace your old optimizer with the 8-bit optimizer in the following way:
```python
import bitsandbytes as bnb
# adam = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.995)) # comment out old optimizer
adam = bnb.optim.Adam8bit(model.parameters(), lr=0.001, betas=(0.9, 0.995)) # add bnb optimizer
adam = bnb.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.995), optim_bits=8) # equivalent
Note that by default all parameter tensors with less than 4096 elements are kept at 32-bit even if you initialize those parameters with 8-bit optimizers. This is done since such small tensors do not save much memory and often contain highly variable parameters (biases) or parameters that require high precision (batch norm, layer norm). You can change this behavior like so:
```
# parameter tensors with less than 16384 values are optimized in 32-bit
If you want to optimize some unstable parameters with 32-bit Adam and others with 8-bit Adam, you can use the `GlobalOptimManager`. With this, we can also configure specific hyperparameters for particular layers, such as embedding layers. To do that, we need two things: (1) register the parameter while they are still on the CPU, (2) override the config with the new desired hyperparameters (anytime, anywhere). See our [guide](howto_config_override.md) for more details
To use the Stable Embedding Layer, override the respective `build_embedding(...)` function of your model. Make sure to also use the `--no-scale-embedding` flag to disable scaling of the word embedding layer (nor replaced with layer norm). You can use the optimizers by replacing the optimizer in the respective file (`adam.py` etc.).
The majority of bitsandbytes is licensed under MIT, however portions of the project are available under separate license terms: Pytorch is licensed under the BSD license.
We thank Fabio Cannizzo for his work on [FastBinarySearch](https://github.com/fabiocannizzo/FastBinarySearch) which we use for CPU quantization.