bitsandbytes-rocm/tests/test_functional.py

2517 lines
83 KiB
Python
Raw Normal View History

2022-07-22 21:41:05 +00:00
import math
import random
import time
2021-10-06 02:16:20 +00:00
from itertools import product
import einops
import pytest
import torch
2022-11-06 21:05:25 +00:00
import numpy as np
import bitsandbytes as bnb
2021-10-06 02:16:20 +00:00
from bitsandbytes import functional as F
2022-11-06 21:05:25 +00:00
from scipy.stats import norm
2021-10-06 02:16:20 +00:00
torch.set_printoptions(
2022-11-06 19:59:37 +00:00
precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
)
2022-07-22 21:41:05 +00:00
k = 20
2023-05-02 15:58:59 +00:00
def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0, throw=True):
2022-07-22 21:41:05 +00:00
idx = torch.isclose(a, b, rtol, atol)
sumval = (idx == 0).sum().item()
2022-07-22 21:41:05 +00:00
if sumval > count:
2023-05-02 15:58:59 +00:00
if throw:
print(f"Too many values not close: assert {sumval} < {count}")
torch.testing.assert_close(a, b, rtol, atol)
2023-05-02 15:58:59 +00:00
return sumval
2022-07-22 21:41:05 +00:00
2022-07-22 21:41:05 +00:00
class FFN(torch.nn.Module):
def __init__(self, input_features, hidden_size, bias=True):
super().__init__()
2022-07-22 21:41:05 +00:00
self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)
with torch.no_grad():
torch.nn.init.xavier_uniform_(self.fc1.weight)
torch.nn.init.xavier_uniform_(self.fc2.weight)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
class Timer:
2022-07-22 21:41:05 +00:00
def __init__(self):
self.starts = {}
self.ends = {}
self.agg = {}
def tick(self, name="default"):
2022-07-22 21:41:05 +00:00
if name not in self.starts:
self.starts[name] = torch.cuda.Event(enable_timing=True)
self.ends[name] = torch.cuda.Event(enable_timing=True)
self.starts[name].record()
else:
ms = self.tock(name, evict=True, print_ms=False)
def tock(self, name="default", evict=True, print_ms=True):
2022-07-22 21:41:05 +00:00
if name in self.ends:
self.ends[name].record()
torch.cuda.synchronize()
ms = self.starts[name].elapsed_time(self.ends[name])
if name not in self.agg:
self.agg[name] = 0.0
2022-07-22 21:41:05 +00:00
self.agg[name] += ms
if evict:
self.starts.pop(name)
self.ends.pop(name)
if print_ms and name in self.agg:
print(f"{name} took: {self.agg[name] / 1000.0:.5f}s")
2022-07-22 21:41:05 +00:00
return self.agg[name]
def reset(self):
self.starts = {}
2022-07-22 21:41:05 +00:00
self.ends = {}
self.agg = {}
print("Resetting benchmark data")
2022-07-22 21:41:05 +00:00
2021-10-06 02:16:20 +00:00
def setup():
pass
2021-10-06 02:16:20 +00:00
def teardown():
pass
@pytest.mark.parametrize(
"dtype", [torch.float32, torch.float16], ids=["float", "half"]
)
2021-10-06 02:16:20 +00:00
def test_estimate_quantiles(dtype):
A = torch.rand(1024, 1024, device="cuda")
2021-10-06 02:16:20 +00:00
A = A.to(dtype)
code = F.estimate_quantiles(A)
percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device)
torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2)
2021-10-06 02:16:20 +00:00
A = torch.randn(1024, 1024, device="cuda")
2021-10-06 02:16:20 +00:00
A = A.to(dtype)
code = F.estimate_quantiles(A)
quantiles = torch.quantile(A.float(), percs)
diff = torch.abs(code - quantiles)
2021-10-06 02:16:20 +00:00
assert (diff > 5e-02).sum().item() == 0
def test_quantile_quantization():
for i in range(100):
A1 = torch.randn(1024, 1024, device="cuda")
2021-10-06 02:16:20 +00:00
code = F.estimate_quantiles(A1)
C = F.quantize_no_absmax(A1, code)
A2 = F.dequantize_no_absmax(C, code)
diff = torch.abs(A1 - A2).mean().item()
2021-10-06 02:16:20 +00:00
assert diff < 0.0075
A1 = torch.rand(1024, 1024, device="cuda")
2021-10-06 02:16:20 +00:00
code = F.estimate_quantiles(A1)
C = F.quantize_no_absmax(A1, code)
A2 = F.dequantize_no_absmax(C, code)
diff = torch.abs(A1 - A2).mean().item()
torch.testing.assert_close(A1, A2, atol=5e-3, rtol=0)
2021-10-06 02:16:20 +00:00
assert diff < 0.001
def test_dynamic_quantization():
diffs = []
reldiffs = []
for i in range(100):
A1 = torch.randn(1024, 1024, device="cuda")
2021-10-06 02:16:20 +00:00
C, S = F.quantize(A1)
A2 = F.dequantize(C, S)
diff = torch.abs(A1 - A2)
reldiff = diff / torch.abs(A1 + 1e-8)
2021-10-06 02:16:20 +00:00
diffs.append(diff.mean().item())
reldiffs.append(reldiff.mean().item())
assert diff.mean().item() < 0.0135
# print(sum(diffs)/len(diffs))
# print(sum(reldiffs)/len(reldiffs))
2021-10-06 02:16:20 +00:00
for i in range(100):
A1 = torch.rand(1024, 1024, device="cuda")
2021-10-06 02:16:20 +00:00
C, S = F.quantize(A1)
A2 = F.dequantize(C, S)
diff = torch.abs(A1 - A2).mean().item()
torch.testing.assert_close(A1, A2, atol=1e-2, rtol=0)
2021-10-06 02:16:20 +00:00
assert diff < 0.004
@pytest.mark.parametrize("nested", [False, True], ids=["False", "True"])
@pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64])
def test_dynamic_blockwise_quantization(nested, blocksize):
#print('')
diffs = []
reldiffs = []
for i in range(100):
A1 = torch.randn(1024, 1024, device="cuda")
C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested)
A2 = F.dequantize_blockwise(C, S)
diff = torch.abs(A1 - A2)
reldiff = diff / torch.abs(A1 + 1e-8)
diffs.append(diff.mean().item())
reldiffs.append(reldiff.mean().item())
abserr = sum(diffs)/len(diffs)
relerr = sum(reldiffs)/len(reldiffs)
assert abserr < 0.011
assert relerr < 0.018
2023-05-06 21:59:29 +00:00
#print('nested=', nested, 'randn', blocksize, sum(diffs)/len(diffs))
#print('nested=', nested, 'randn', blocksize, sum(reldiffs)/len(reldiffs))
diffs = []
for i in range(100):
A1 = torch.rand(1024, 1024, device="cuda")
C, S = F.quantize_blockwise(A1, blocksize=blocksize, nested=nested)
A2 = F.dequantize_blockwise(C, S)
diff = torch.abs(A1 - A2)
reldiff = diff / torch.abs(A1 + 1e-8)
diffs.append(diff.mean().item())
reldiffs.append(reldiff.mean().item())
#torch.testing.assert_close(A1, A2, atol=1e-2, rtol=0)
abserr = sum(diffs)/len(diffs)
relerr = sum(reldiffs)/len(reldiffs)
assert abserr < 0.0035
assert relerr < 0.015
2023-05-06 21:59:29 +00:00
#print('nested=', nested, 'rand', blocksize, sum(diffs)/len(diffs))
#print('nested=', nested, 'rand', blocksize, sum(reldiffs)/len(reldiffs))
2021-10-06 02:16:20 +00:00
@pytest.mark.parametrize(
"gtype", [torch.float32, torch.float16], ids=["float", "half"]
)
2021-10-06 02:16:20 +00:00
def test_percentile_clipping(gtype):
gnorm_vec1 = torch.zeros(100, device="cuda")
gnorm_vec2 = torch.zeros(100, device="cuda")
2021-10-06 02:16:20 +00:00
n = 4
step = 0
percentile = 5
2022-07-22 21:41:05 +00:00
for i in range(k):
2021-10-06 02:16:20 +00:00
step += 1
g = torch.randn(n, n, dtype=gtype, device="cuda")
gnorm1, clip2, gnorm_scale = F.percentile_clipping(
g, gnorm_vec2, step, percentile=percentile
)
assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2 / gnorm1
2021-10-06 02:16:20 +00:00
gnorm2 = torch.norm(g.float())
if step == 1:
gnorm_vec1[:] = gnorm2
else:
gnorm_vec1[step % 100] = gnorm2
vals, idx = torch.sort(gnorm_vec1)
clip1 = vals[percentile]
torch.testing.assert_close(gnorm_vec1, torch.sqrt(gnorm_vec2))
torch.testing.assert_close(clip1, clip2)
torch.testing.assert_close(gnorm1, gnorm2)
2021-10-06 02:16:20 +00:00
2022-07-22 21:41:05 +00:00
def quant(x):
max1 = torch.abs(x).max()
x = torch.round(x / max1 * 127)
2022-07-22 21:41:05 +00:00
return max1, x.to(torch.int8)
2022-07-22 21:41:05 +00:00
def dequant(c, maxC):
return c.float() * (maxC / 127)
2022-07-22 21:41:05 +00:00
def mm_dequant(maxA, maxB, C):
return C.float() * (maxA / 127) * (maxB / 127)
2022-07-22 21:41:05 +00:00
def quant_multi(x, dim):
max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
max1[max1 == 0] = 1.0
x = torch.round(x / max1 * 127)
2022-07-22 21:41:05 +00:00
return max1, x.to(torch.int8)
2022-07-22 21:41:05 +00:00
def quant_multi_chunk(x, dim, chunk_size=32):
if dim == 1:
x_chunked = einops.rearrange(x, "(c a) b -> c a b", c=chunk_size)
max1 = torch.amax(torch.abs(x_chunked), dim=dim + 1, keepdim=True)
2022-07-22 21:41:05 +00:00
max1 = torch.tile(max1, (1, 1, x.shape[1]))
max1 = max1.view(x.shape)
elif dim == 0:
x_chunked = einops.rearrange(x, "a (b c) -> a b c", c=chunk_size)
2022-07-22 21:41:05 +00:00
max1 = torch.amax(torch.abs(x_chunked), dim=dim, keepdim=True)
max1 = torch.tile(max1, (x.shape[0], 1, 1))
max1 = max1.view(x.shape)
max1[max1 == 0] = 1.0
x = torch.round(x / max1 * 127)
2022-07-22 21:41:05 +00:00
return max1, x.to(torch.int8)
2022-07-22 21:41:05 +00:00
def quant_minmax(A):
minA = A.min()
maxA = A.max()
2022-07-22 21:41:05 +00:00
def mean(xx):
return sum(xx) / float(len(xx))
2022-07-22 21:41:05 +00:00
# dim1 = torch.randint(1,1024*4, size=(4,)).tolist()
# dim2 = torch.randint(1,1024*4, size=(4,)).tolist()
dim1 = [1024 * 2]
dim2 = [1024 * 16]
methods = [
(
lambda x, dim: quant(x),
lambda x, dim: quant(x),
dequant,
dequant,
mm_dequant,
)
]
2022-07-22 21:41:05 +00:00
methods.append((quant_multi, quant_multi, dequant, dequant, mm_dequant))
# methods.append((lambda x: quant_multi_chunk(x, dim=-1), lambda x: quant_multi_chunk(x, dim=0), dequant, dequant, mm_dequant))
method_names = ["linear", "vectorwise"]
2022-07-22 21:41:05 +00:00
batched = [False, True]
values = list(product(dim1, dim2, methods, batched))
values_names = list(product(dim1, dim2, method_names, batched))
names = [
"dim1_{}_dim2_{}_quant_{}_batched_{}".format(*vals)
for vals in values_names
]
@pytest.mark.parametrize(
"dim1, dim2, quant_methods, batched", values, ids=names
)
2022-07-22 21:41:05 +00:00
def test_approx_igemm(dim1, dim2, quant_methods, batched):
dim1 = dim1 - (dim1 % 32)
dim2 = dim2 - (dim2 % 32)
errors = []
relerrors = []
2023-05-06 21:59:29 +00:00
#print("")
2022-07-22 21:41:05 +00:00
for i in range(5):
if batched:
A = torch.normal(0, 0.5, size=(32, dim1, dim2 // 32), device="cuda")
B = torch.normal(0, 0.5, size=(32, dim2 // 32, dim1), device="cuda")
2022-07-22 21:41:05 +00:00
maxA, Ac = quant_methods[0](A, 2)
maxB, Bc = quant_methods[1](B, 1)
else:
A = torch.normal(0, 0.5, size=(dim1, dim2), device="cuda")
B = torch.normal(0, 0.5, size=(dim2, dim1), device="cuda")
2022-07-22 21:41:05 +00:00
maxA, Ac = quant_methods[0](A, 1)
maxB, Bc = quant_methods[1](B, 0)
torch.testing.assert_close(
quant_methods[2](maxA, Ac), A, atol=0.025, rtol=0.05
)
2022-07-22 21:41:05 +00:00
if batched:
out2 = torch.bmm(A, B)
C = torch.bmm(Ac.float(), Bc.float())
else:
out2 = torch.mm(A, B)
C = F.igemm(Ac, Bc)
out = quant_methods[4](maxA, maxB, C)
std = out2.std()
out /= std
out2 /= std
err = torch.abs(out - out2)
relerr = err / torch.abs(out2)
2022-07-22 21:41:05 +00:00
errors.append(err.mean().item())
relerrors.append(relerr.mean().item())
2023-05-06 21:59:29 +00:00
#print(mean(errors))
#print(mean(relerrors))
2022-07-22 21:41:05 +00:00
2021-10-06 02:16:20 +00:00
def test_stable_embedding():
layer = bnb.nn.StableEmbedding(1024, 1024)
layer.reset_parameters()
2022-07-22 21:41:05 +00:00
n = 2
hidden_dim = torch.randint(32, 256, size=(n,)).tolist()
batch_dim = torch.randint(16, 256, size=(n,)).tolist()
seq_dim = torch.randint(16, 256, size=(n,)).tolist()
2022-07-22 21:41:05 +00:00
transpose = [(False, False), (False, True), (True, False), (True, True)]
values = list(product(hidden_dim, batch_dim, transpose, seq_dim))
names = [
"hidden_dim_{}_batch_dim_{},transpose_{}_seq_dim_{}".format(*vals)
for vals in values
]
@pytest.mark.parametrize(
"hidden_dim, batch_dim, transpose, seq_dim", values, ids=names
)
2022-07-22 21:41:05 +00:00
def test_igemm(hidden_dim, batch_dim, transpose, seq_dim):
hidden_dim = hidden_dim - (hidden_dim % 32)
batch_dim = batch_dim - (batch_dim % 16)
seq_dim = seq_dim - (seq_dim % 16)
for i in range(k):
shapeA = (
(batch_dim, hidden_dim)
if not transpose[0]
else (hidden_dim, batch_dim)
)
shapeB = (
(32 * random.randint(1, 4), hidden_dim)
if transpose[1]
else (hidden_dim, 32 * random.randint(1, 4))
)
A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
2022-07-22 21:41:05 +00:00
if not transpose[0] and not transpose[1]:
out2 = torch.matmul(A.float(), B.float())
out = F.igemm(A, B)
elif not transpose[0] and transpose[1]:
out2 = torch.matmul(A.float(), B.t().float())
out = F.igemm(A, B.t())
elif transpose[0] and not transpose[1]:
out2 = torch.matmul(A.t().float(), B.float())
out = F.igemm(A.t(), B)
elif transpose[0] and transpose[1]:
out2 = torch.matmul(A.t().float(), B.t().float())
out = F.igemm(A.t(), B.t())
2021-10-06 02:16:20 +00:00
torch.testing.assert_close(out.float(), out2)
2021-10-06 02:16:20 +00:00
2022-07-22 21:41:05 +00:00
for i in range(k):
shapeA = (batch_dim, seq_dim, hidden_dim)
shapeB = (
(32 * random.randint(1, 4), hidden_dim)
if transpose[1]
else (hidden_dim, 32 * random.randint(1, 4))
)
A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
2022-07-22 21:41:05 +00:00
if not transpose[0] and not transpose[1]:
out2 = torch.matmul(A.float(), B.float())
out = F.igemm(A, B)
elif not transpose[0] and transpose[1]:
out2 = torch.matmul(A.float(), B.t().float())
out = F.igemm(A, B.t())
torch.testing.assert_close(out.float(), out2)
2022-07-22 21:41:05 +00:00
n = 3
seq_dim = torch.randint(32, 512, size=(n,)).tolist()
hidden_dim = torch.randint(32, 1024 * 4, size=(n,)).tolist()
batch_dim = torch.randint(2, 16, size=(n,)).tolist()
values = list(product(seq_dim, hidden_dim, batch_dim))
names = [
"seq_dim{}_hidden_dim{}_batch_dim{}".format(*vals) for vals in values
]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("seq_dim, hidden_dim, batch_dim", values, ids=names)
def test_dim3_igemm(seq_dim, hidden_dim, batch_dim):
seq_dim = seq_dim - (seq_dim % 32)
hidden_dim = hidden_dim - (hidden_dim % 32)
batch_dim = batch_dim - (batch_dim % 2)
for i in range(25):
A = torch.randint(
-128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda"
).to(torch.int8)
B = torch.randint(
-128, 127, size=(batch_dim, seq_dim, 1024), device="cuda"
).to(torch.int8)
out2 = torch.einsum("bsi, bso->io", A.float(), B.float())
iout = torch.empty(
A.shape[2], B.shape[2], dtype=torch.int32, device=A.device
)
2022-07-22 21:41:05 +00:00
out = F.igemm(A, B, out=iout)
torch.testing.assert_close(out.float(), out2)
2022-07-22 21:41:05 +00:00
2022-07-22 21:41:05 +00:00
n = 2
seq_dim = torch.randint(32, 512, size=(n,)).tolist()
hidden_dim = torch.randint(32, 1024 * 4, size=(n,)).tolist()
batch_dim = torch.randint(2, 16, size=(n,)).tolist()
2022-07-22 21:41:05 +00:00
transpose = [False, True]
values = list(product(seq_dim, hidden_dim, batch_dim, transpose))
names = [
"seq_dim={}_hidden_dim={}_batch_dim={}_transpose{}".format(*vals)
for vals in values
]
@pytest.mark.parametrize(
"seq_dim, hidden_dim, batch_dim, transpose", values, ids=names
)
2022-07-22 21:41:05 +00:00
def test_minmax_igemm(seq_dim, hidden_dim, batch_dim, transpose):
def min_max(x):
maxA = torch.amax(x, dim=2, keepdim=True)
minA = torch.amin(x, dim=2, keepdim=True)
scale = (maxA - minA) / 2.0
return (127 * (x - minA - scale) / scale).to(torch.int8), minA, scale
2022-07-22 21:41:05 +00:00
seq_dim = seq_dim - (seq_dim % 16)
hidden_dim = hidden_dim - (hidden_dim % 16)
batch_dim = batch_dim - (batch_dim % 2)
errs = []
relerrs = []
errs2 = []
relerrs2 = []
for i in range(k):
A = torch.normal(
0.0, 0.5, size=(batch_dim, seq_dim, hidden_dim), device="cuda"
)
2022-07-22 21:41:05 +00:00
if transpose:
B = torch.normal(0, 0.5, size=(256, hidden_dim), device="cuda")
2022-07-22 21:41:05 +00:00
else:
B = torch.normal(0, 0.5, size=(hidden_dim, 256), device="cuda")
2022-07-22 21:41:05 +00:00
Ac, minA, scale = min_max(A)
if transpose:
maxB, Bc = quant_multi(B, dim=(1 if transpose else 0))
out = F.igemm(Ac, Bc.t())
out2 = torch.matmul(A, B.t())
offset = B.t().sum(0) * (minA + scale)
2022-07-22 21:41:05 +00:00
out = out.float()
out = (out * maxB.t() * scale / (127 * 127)) + offset
2022-07-22 21:41:05 +00:00
maxA, Ac = quant_multi(A, dim=2)
out3 = F.igemm(Ac, Bc.t())
out3 = mm_dequant(maxA, maxB.t(), out3)
else:
maxB, Bc = quant_multi(B, dim=0)
offset = B.sum(0) * (minA + scale)
2022-07-22 21:41:05 +00:00
out = F.igemm(Ac, Bc)
out2 = torch.matmul(A, B)
2022-07-22 21:41:05 +00:00
out = out.float()
out = (out * maxB * scale / (127 * 127)) + offset
2022-07-22 21:41:05 +00:00
maxA, Ac = quant_multi(A, dim=2)
out3 = F.igemm(Ac, Bc)
out3 = mm_dequant(maxA, maxB, out3)
std = out2.std()
out2 /= std
out /= std
out3 /= std
err = torch.abs(out - out2)
relerr = err / (torch.abs(out2) + 1e-7)
2022-07-22 21:41:05 +00:00
err2 = torch.abs(out3 - out2)
relerr2 = err2 / (torch.abs(out2) + 1e-7)
2022-07-22 21:41:05 +00:00
errs.append(err.mean().item())
relerrs.append(relerr.mean().item())
errs2.append(err2.mean().item())
relerrs2.append(relerr2.mean().item())
# print(mean(errs))
# print(mean(relerrs))
# print(mean(errs2))
# print(mean(relerrs2))
2022-07-22 21:41:05 +00:00
assert mean(errs) < 0.015
assert mean(relerrs) < 0.3
2022-07-22 21:41:05 +00:00
n = 2
dim1 = torch.randint(1, 64, size=(n,)).tolist()
dim2 = torch.randint(32, 128, size=(n,)).tolist()
dim3 = torch.randint(32, 256, size=(n,)).tolist()
dim4 = torch.randint(32, 256, size=(n,)).tolist()
2022-07-22 21:41:05 +00:00
transpose = [(False, False), (True, False), (False, True), (True, True)]
values = list(product(dim1, dim2, dim3, dim4, transpose))
names = [
"dim1_{}_dim2_{}_dim3_{}_dim4_{}_transpose_{}".format(*vals)
for vals in values
]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, transpose", values, ids=names)
def test_ibmm(dim1, dim2, dim3, dim4, transpose):
dim2 = dim2 - (dim2 % 16)
dim3 = dim3 - (dim3 % 16)
dim4 = dim4 - (dim4 % 16)
for i in range(k):
shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3)
shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4)
A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
2022-07-22 21:41:05 +00:00
if not transpose[0] and not transpose[1]:
out2 = torch.bmm(A.float(), B.float())
out = F.igemm(A, B)
elif not transpose[0] and transpose[1]:
out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float())
out = F.igemm(A, B.permute([0, 2, 1]))
elif transpose[0] and not transpose[1]:
out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float())
out = F.igemm(A.permute([0, 2, 1]), B)
elif transpose[0] and transpose[1]:
out2 = torch.bmm(
A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float()
)
2022-07-22 21:41:05 +00:00
out = F.igemm(A.permute([0, 2, 1]), B.permute([0, 2, 1]))
torch.testing.assert_close(out.float(), out2.float())
2022-07-22 21:41:05 +00:00
2022-07-22 21:41:05 +00:00
n = 1
dim1 = torch.randint(1, 64, size=(n,)).tolist()
dim2 = torch.randint(32, 128, size=(n,)).tolist()
dim3 = torch.randint(32, 256, size=(n,)).tolist()
values = list(product(dim1, dim2, dim3))
names = ["dim1_{}_dim2_{}_dim3_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2, dim3", values, ids=names)
def test_vector_quant(dim1, dim2, dim3):
dim2 = dim2 - (dim2 % 16)
dim3 = dim3 - (dim3 % 16)
for i in range(k):
A = torch.randn(size=(dim2, dim3), device="cuda")
2022-07-22 21:41:05 +00:00
qA, SA = F.vectorwise_quant(A, dim=0)
A1 = F.vectorwise_dequant(qA, SA)
n = A1.numel()
assert_all_approx_close(A1, A, atol=0.01, rtol=0.1, count=int(n*0.002))
2022-07-22 21:41:05 +00:00
n = 2
dim1 = torch.randint(2, 256, size=(n,)).tolist()
dim2 = torch.randint(2, 256, size=(n,)).tolist()
dim3 = torch.randint(2, 256, size=(n,)).tolist()
# dim1, dim2 = (256,), (256,)
2022-07-22 21:41:05 +00:00
dtype = [torch.int8, torch.int32]
a_order = ["row"]
out_order = ["col", "row", "col32"]
2022-07-22 21:41:05 +00:00
transpose = [False]
dims = [2, 3]
values = list(product(dim1, dim2, dim3, dims, dtype, a_order, out_order, transpose))
names = ["dim1_{}_dim2_{}_dim3_{}_dims_{}_dtype_{}_orderA_{}_orderOut_{}_transpose_{}".format(*vals)for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose",values,ids=names)
def test_nvidia_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose):
if dims == 3 and out_order != "col32":
return
if dtype == torch.int32 and out_order != "col32":
return
2022-07-22 21:41:05 +00:00
func = F.get_transform_func(dtype, orderA, orderOut, transpose)
if dims == 2:
A = torch.randint(-128, 127, size=(dim1, dim2), device="cuda").to(dtype)
2022-07-22 21:41:05 +00:00
elif dims == 3:
A = torch.randint(-128, 127, size=(dim1, dim2, dim3), device="cuda").to(
dtype
)
2022-07-22 21:41:05 +00:00
out, S = F.nvidia_transform(A, to_order=orderOut)
if orderOut == "row":
torch.testing.assert_close(A.flatten(), out.flatten())
elif orderOut == "col":
torch.testing.assert_close(A.t().flatten(), out.flatten())
elif orderOut == "col32":
2022-07-22 21:41:05 +00:00
if dims == 2:
n = A.shape[0] * (A.shape[1] + (32 - (A.shape[1] % 32)))
2022-07-22 21:41:05 +00:00
elif dims == 3:
n = (
A.shape[0]
* A.shape[1]
* (A.shape[2] + (32 - (A.shape[2] % 32)))
)
2022-07-22 21:41:05 +00:00
assert out.numel() == n
elif orderOut == "col_turing":
2022-07-22 21:41:05 +00:00
# 32 col 8 row tiles
n = (A.shape[0] + (8 - A.shape[0] % 8)) * (
A.shape[1] + (32 - (A.shape[1] % 32))
)
2022-07-22 21:41:05 +00:00
assert out.numel() == n
total_coltile = (A.shape[1] // 32) + (1 if A.shape[1] % 32 != 0 else 0)
for row in range(A.shape[0]):
for col in range(A.shape[1]):
i = row * A.shape[1]
2022-07-22 21:41:05 +00:00
j = col
coltile = (col // 32) + (1 if col % 32 != 0 else 0)
rowtile = (
(row // 8) + (1 if row % 8 != 0 else 0)
) * total_coltile
offset = 32 * 8 * (rowtile + coltile)
2022-07-22 21:41:05 +00:00
col2 = col % 32
row2 = (row % 8) * 32
2022-07-22 21:41:05 +00:00
assert A.flatten()[i + j] == A[row, col]
# assert A.flatten()[i+j] == out.flatten()[row2+col2]
# torch.testing.assert_close(A.flatten()[i+j], A[row, col])
# torch.testing.assert_close(A.flatten()[i+j], out.flatten()[row2+ col2+block_offset])
2022-07-22 21:41:05 +00:00
if orderOut == "col32":
out2, S = F.nvidia_transform(
out, from_order=orderOut, to_order="row", state=S
)
torch.testing.assert_close(A, out2)
2022-07-22 21:41:05 +00:00
n = 1
dim1 = torch.randint(1, 256, size=(n,)).tolist()
dim2 = torch.randint(32, 512, size=(n,)).tolist()
dim3 = torch.randint(32, 1024, size=(n,)).tolist()
dim4 = torch.randint(32, 1024, size=(n,)).tolist()
2022-07-22 21:41:05 +00:00
# dim1 = [2]
# dim2 = [2]
# dim3 = [2]
# dim4 = [2]
2022-07-22 21:41:05 +00:00
dims = (2, 3)
2022-07-22 21:41:05 +00:00
ldb = [0]
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dim3, dim4, dims, ldb))
names = [
"dim1_{}_dim2_{}_dim3_{}_dim4_{}_dims_{}_ldb_{}".format(*vals)
for vals in values
]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims, ldb", values, ids=names)
def test_igemmlt_int(dim1, dim2, dim3, dim4, dims, ldb):
for i in range(k):
if dims == 2:
A = torch.randint(-128, 127, size=(dim1, dim3), device="cuda").to(
torch.int8
)
2022-07-22 21:41:05 +00:00
elif dims == 3:
A = torch.randint(
-128, 127, size=(dim1, dim2, dim3), device="cuda"
).to(torch.int8)
B = torch.randint(-128, 127, size=(dim4, dim3), device="cuda").to(
torch.int8
)
2022-07-22 21:41:05 +00:00
C1 = torch.matmul(A.float(), B.t().float())
A2, SA = F.transform(A, "col32")
B2, SB = F.transform(B, "col_turing")
2022-07-22 21:41:05 +00:00
C2, SC = F.igemmlt(A2, B2, SA, SB)
C3, S = F.nvidia_transform(C2, "row", state=SC)
torch.testing.assert_close(C1, C3.float())
2022-07-22 21:41:05 +00:00
# transpose
B = torch.randint(-128, 127, size=(dim3, dim4), device="cuda").to(
torch.int8
)
2022-07-22 21:41:05 +00:00
C1 = torch.matmul(A.float(), B.float())
B2t, SBt = F.transform(B, "col_turing", transpose=True)
2022-07-22 21:41:05 +00:00
C2, SC = F.igemmlt(A2, B2t, SA, SBt)
C3, S = F.nvidia_transform(C2, "row", state=SC)
torch.testing.assert_close(C1, C3.float())
2022-07-22 21:41:05 +00:00
2022-07-22 21:41:05 +00:00
dim1 = [32]
dim2 = [32]
dim3 = [32]
dim4 = [32]
dims = (2,)
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dim3, dim4, dims))
names = [
"dim1_{}_dim2_{}_dim3_{}_dim4_{}_dims_{}".format(*vals)
for vals in values
]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims", values, ids=names)
def test_igemmlt_half(dim1, dim2, dim3, dim4, dims):
formatB = F.get_special_format_str()
for i in range(k):
if dims == 2:
A = torch.normal(0, 0.5, size=(dim1, dim3), device="cuda").half()
2022-07-22 21:41:05 +00:00
elif dims == 3:
A = torch.normal(
0, 0.5, size=(dim1, dim2, dim3), device="cuda"
).half()
B = torch.randn((dim4, dim3), device="cuda").half()
2022-07-22 21:41:05 +00:00
torch.nn.init.xavier_uniform_(B)
C1 = torch.matmul(A, B.t())
C2 = bnb.matmul(A, B.t())
A = A.view(-1, A.shape[-1])
CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
CB, CBt, statsB, statsBt, coo_tensor = F.double_quant(B)
C32A, SA = F.transform(CA, "col32")
2022-07-22 21:41:05 +00:00
CxB, SB = F.transform(CB, to_order=formatB)
out1_32, Sout1_32 = F.igemmlt(C32A, CxB, SA, SB)
output = F.mm_dequant(out1_32, Sout1_32, statsAt, statsBt)
# print('')
# print(output.flatten()[:10])
# print(C1.flatten()[:10])
# print(C2.flatten()[:10])
2022-07-22 21:41:05 +00:00
# torch.testing.assert_close(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05)
2022-07-22 21:41:05 +00:00
# transpose
# B = torch.randint(-128, 127, size=(dim3, dim4), device='cuda').to(torch.int8)
# C1 = torch.matmul(A.float(), B.float())
# B2t, SBt = F.transform2(B, 'col_turing', transpose=True)
# C2, SC = F.igemmlt(A2, B2t, SA, SBt)
# C3, S = F.transform(C2, 'row', state=SC)
# torch.testing.assert_close(C1, C3.float())
2022-07-22 21:41:05 +00:00
batch_size = 2
seqdim = 512
# values = [(batch_size, seqdim, 4*1024, 16*1024),(batch_size, seqdim, 5120, 4*5120),(batch_size, seqdim, 12*1024, 4*12*1024)]
values = [
(batch_size, seqdim, 4 * 1024, 3 * 4 * 1024),
(batch_size, seqdim, 5120, 3 * 5120),
(batch_size, seqdim, 12 * 1024, 4 * 12 * 1024),
]
# values = list(product(batch, seq, model, hidden))
names = [
"batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values
]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names)
def test_bench_8bit_training(batch, seq, model, hidden):
formatB = F.get_special_format_str()
A = torch.randn(batch, seq, model, device="cuda").half()
grad = torch.randn(batch, seq, model, device="cuda").half()
w1 = torch.randint(-128, 127, size=(hidden, model), device="cuda").half()
w2 = torch.randint(-128, 127, size=(model, hidden), device="cuda").half()
print("")
2022-07-22 21:41:05 +00:00
# torch.cuda.synchronize()
2022-07-22 21:41:05 +00:00
## warmup
# for i in range(100):
2022-07-22 21:41:05 +00:00
# torch.matmul(A, w1.t())
# torch.cuda.synchronize()
2022-07-22 21:41:05 +00:00
dtype = torch.int8
A = A.view(-1, A.shape[-1]).contiguous()
grad = grad.view(-1, grad.shape[-1]).contiguous()
torch.cuda.synchronize()
t0 = time.time()
for i in range(k):
out1 = torch.matmul(A, w1.t()) # fc1
# out2 = torch.matmul(out1, w2.t())# fc2
2022-07-22 21:41:05 +00:00
# d1 = torch.matmul(grad, w2) # delta1
# d2 = torch.matmul(d1, w1) # delta2
2022-07-22 21:41:05 +00:00
# grad1 = torch.einsum('bo,bh->oh', out1, grad) # grad w2
# grad2 = torch.einsum('bh,bo->ho', A, d2) # grad w1
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t16 = time.time() - t0
print(t16)
# torch.cuda.empty_cache()
2022-07-22 21:41:05 +00:00
# Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
# Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2)
2022-07-22 21:41:05 +00:00
# CTw1, Sw1 = F.transform2(Cw1, formatB)
# CTw2, Sw2 = F.transform2(Cw2, formatB)
# CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True)
# CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True)
2022-07-22 21:41:05 +00:00
# CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
# C32A, SA = F.transform2(CA, 'col32')
2022-07-22 21:41:05 +00:00
## fc1
# out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1, dtype=dtype)
2022-07-22 21:41:05 +00:00
##out1 = F.mm_dequant(out1_32, Sout1_32, statsAt, statsw1t)
## fc2
# Cout1, Cout1t, statsout1, statsout1t, coo_tensor = F.double_quant(out1)
# C32out1, Sout1 = F.transform2(Cout1, 'col32')
# out2_32, Sout2_32 = F.igemmlt(C32out1, CTw2, Sout1, Sw2, dtype=dtype)
2022-07-22 21:41:05 +00:00
##out2 = F.mm_dequant(out2_32, Sout2_32, statsout1t, statsw2t)
## delta1
# Cgrad, Cgradt, statsgrad, statsgradt, coo_tensor = F.double_quant(grad)
# C32grad, Sgrad = F.transform2(Cgrad, 'col32')
2022-07-22 21:41:05 +00:00
##d1_32, Sd1_32 = F.igemmlt(C32grad, CTw2t, Sgrad, Sw2t, dtype=dtype)
##d1 = F.mm_dequant(d1_32, Sd1_32, statsgradt, statsw2)
## delta2
# Cd1, Cd1t, statsd1, statsd1t, coo_tensor = F.double_quant(d1)
# C32d1, Sd1 = F.transform2(Cd1, 'col32')
2022-07-22 21:41:05 +00:00
##d2_32, Sd2_32 = F.igemmlt(C32d1, CTw1t, Sd1, Sw1t, dtype=dtype)
##d2 = F.mm_dequant(d2_32, Sd2_32, statsd1t, statsw1)
## grad1
# C32out1t, Sout1t = F.transform2(Cout1t, 'col32', transpose=True)
# CTgradt, Sgradt = F.transform2(Cgradt, formatB, transpose=True)
2022-07-22 21:41:05 +00:00
##grad1_32, Sgrad1_32 = F.igemmlt(C32out1t, CTgradt, Sout1t, Sgradt, dtype=dtype)
##grad1 = F.mm_dequant(grad1_32, Sgrad1_32, statsout1, statsgrad)
## grad2
# C32At, SAt = F.transform2(CAt, 'col32', transpose=True)
# CTd1t, Sd1t = F.transform2(Cd1t, formatB, transpose=True)
2022-07-22 21:41:05 +00:00
##grad2_32, Sgrad2_32 = F.igemmlt(C32At, CTd1t, SAt, Sd1t, dtype=dtype)
##grad2 = F.mm_dequant(grad2_32, Sgrad2_32, statsA, statsd1)
# Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2)
2022-07-22 21:41:05 +00:00
# Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
# Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2)
2022-07-22 21:41:05 +00:00
# CTw1, Sw1 = F.transform2(Cw1, formatB)
# CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True)
# CTw2, Sw2 = F.transform2(Cw2, formatB)
# CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True)
# torch.cuda.synchronize()
# t0 = time.time()
# for i in range(k):
2022-07-22 21:41:05 +00:00
# #Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
# #CTw1, Sw1 = F.transform2(Cw1, formatB)
# #Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
# #CTw1, Sw1 = F.transform2(Cw1, formatB)
# #CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A, threshold=3.5)
# CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
# #CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True)
# #CTw2, Sw2 = F.transform2(Cw2, formatB)
# #CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True)
# C32A, SA = F.transform2(CA, 'col32')
# # fc1
# out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1, dtype=dtype)
# #out1dn = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1)
# #print(coo_tensor.nnz)
# #out1sp = F.spmm_coo(coo_tensor, w1.t())
# #print(w1.t().shape)
# #out1 = out1dn + out1sp
# # fc2
# Cout1, Cout1t, statsout1, statsout1t, coo_tensor = F.double_quant(out1)
# C32out1, Sout1 = F.transform2(Cout1, 'col32')
# out2_32, Sout2_32 = F.igemmlt(C32out1, CTw2, Sout1, Sw2, dtype=dtype)
# #out2 = F.mm_dequant(out2_32, Sout2_32, statsout1, statsw2)
# # delta1
# Cgrad, Cgradt, statsgrad, statsgradt, coo_tensor = F.double_quant(grad)
# C32grad, Sgrad = F.transform2(Cgrad, 'col32')
# d1_32, Sd1_32 = F.igemmlt(C32grad, CTw2t, Sgrad, Sw2t, dtype=dtype)
# #d1 = F.mm_dequant(d1_32, Sd1_32, statsgrad, statsw2t)
# # delta2
# Cd1, Cd1t, statsd1, statsd1t, coo_tensor = F.double_quant(d1)
# C32d1, Sd1 = F.transform2(Cd1, 'col32')
# d2_32, Sd2_32 = F.igemmlt(C32d1, CTw1t, Sd1, Sw1t, dtype=dtype)
# #d2 = F.mm_dequant(d2_32, Sd2_32, statsd1, statsw1t)
# # grad1
# #C32out1t, Sout1t = F.transform2(Cout1t, 'col32', transpose=True)
# #CTgradt, Sgradt = F.transform2(Cgradt, formatB, transpose=True)
# #grad1_32, Sgrad1_32 = F.igemmlt(C32out1t, CTgradt, Sout1t, Sgradt, dtype=dtype)
# #grad1 = F.mm_dequant(grad1_32, Sgrad1_32, statsout1t, statsgradt)
# ## grad2
# #C32At, SAt = F.transform2(CAt, 'col32', transpose=True)
# #CTd1t, Sd1t = F.transform2(Cd1t, formatB, transpose=True)
# #grad2_32, Sgrad2_32 = F.igemmlt(C32At, CTd1t, SAt, Sd1t, dtype=dtype)
# #grad2 = F.mm_dequant(grad2_32, Sgrad2_32, statsAt, statsd1t)
# torch.cuda.synchronize()
# t8 = time.time() - t0
# print(t8)
2022-07-22 21:41:05 +00:00
n = 2
dim1 = torch.randint(64, 256, size=(n,)).tolist()
dim4 = torch.randint(64, 1024, size=(n,)).tolist()
2022-07-22 21:41:05 +00:00
#dim1 = [2*1024]
#dim4 = [2*1024]
2022-07-22 21:41:05 +00:00
2022-08-16 18:12:09 +00:00
#dim1 = [4]
#dim4 = [4]
2022-07-22 21:41:05 +00:00
dims = (2,)
formatB = ["col_turing", "col_ampere"]
has_bias = [True, False]
values = list(product(dim1, dim4, dims, formatB, has_bias))
names = ["dim1_{}_dim4_{}_dims_{}_formatB_{}_has_bias_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim4, dims, formatB, has_bias", values, ids=names)
def test_dequant_mm(dim1, dim4, dims, formatB, has_bias):
2022-07-22 21:41:05 +00:00
inner = torch.randint(1, 128, size=(1,)).item()
bias = None
if has_bias: bias = torch.randn(dim4, device='cuda', dtype=torch.float16)
2022-07-22 21:41:05 +00:00
formatB = F.get_special_format_str()
2022-08-16 18:12:09 +00:00
for i in range(1):
A = torch.randn(dim1, inner, device="cuda")
B = torch.randn(dim4, inner, device="cuda")
2022-07-22 21:41:05 +00:00
C1 = torch.matmul(A.half(), B.t().half())
if has_bias: C1 += bias
2022-07-22 21:41:05 +00:00
A1, maxA = F.vectorwise_quant(A, dim=1)
B1, maxB = F.vectorwise_quant(B, dim=1)
A2, SA = F.nvidia_transform(A1, "col32")
2022-07-22 21:41:05 +00:00
B2, SB = F.nvidia_transform(B1, formatB)
C2, SC = F.igemmlt(A2, B2, SA, SB)
C3, S = F.nvidia_transform(C2, "row", state=SC)
2022-07-22 21:41:05 +00:00
C4 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t())
if has_bias: C4 += bias
2022-07-22 21:41:05 +00:00
# TODO: is something wrong here? If so, the problem goes deeper
#n = C1.numel()
#p = 0.06
std = C1.std(0).view(1, -1)
C1 /= std
C4 /= std
#assert_all_approx_close(C1, C4, atol=0.02, rtol=0.1, count=int(n*0.06))
2022-08-16 18:12:09 +00:00
#assert (count / n < p), f"error in more than {p} of elements: {count}/{n}={count/n}"
2022-07-22 21:41:05 +00:00
C5 = F.mm_dequant(C2, SC, maxA.flatten(), maxB.flatten(), bias=bias)
#torch.testing.assert_close(C5, C4, atol=0.015, rtol=0.1)
n = C5.numel()
assert_all_approx_close(C1, C4, atol=0.015, rtol=0.1, count=int(0.01*n))
2022-07-22 21:41:05 +00:00
n = 2
dim1 = [1 * 1024]
dim2 = [1 * 1024]
# dim1 = torch.randint(1,4*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
2022-07-22 21:41:05 +00:00
dims = (2,)
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dims))
names = ["dim1_{}_dim2_{}_dims_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2, dims", values, ids=names)
def test_colrow_absmax(dim1, dim2, dims):
for i in range(k):
threshold = 3.0
A = torch.randn(dim1, dim2, device="cuda").half()
2022-07-22 21:41:05 +00:00
A_truncated = A.clone()
A_truncated[torch.abs(A_truncated) >= 3.0] = 0.0
if dims == 2:
row_stats1, _ = torch.abs(A.float()).max(1)
col_stats1, _ = torch.abs(A.float()).max(0)
row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1)
col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0)
else:
assert False
row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(
A, threshold=threshold
)
A_blocked = einops.rearrange(
torch.abs(A),
"(rows row_tiles) (cols block_size)-> rows cols row_tiles block_size",
row_tiles=16,
block_size=64 * 4,
)
nnz_rows1_counts = (torch.abs(A_blocked) >= threshold).sum(3).flatten()
nnz_block_ptr1 = torch.zeros(
nnz_rows1_counts.shape[0] + 1,
dtype=nnz_rows1_counts.dtype,
device=nnz_rows1_counts.device,
)
2022-07-22 21:41:05 +00:00
nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0)
torch.testing.assert_close(col_stats1_trunc, col_stats2)
torch.testing.assert_close(row_stats1_trunc, row_stats2)
torch.testing.assert_close(nnz_block_ptr1.int(), nnz_block_ptr2)
2022-07-22 21:41:05 +00:00
row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(
A, threshold=0.0
)
2022-07-22 21:41:05 +00:00
torch.testing.assert_close(col_stats1, col_stats2)
torch.testing.assert_close(row_stats1, row_stats2)
2022-07-22 21:41:05 +00:00
assert nnz_block_ptr2 is None
n = 2
# dim1 = [8*1024]
# dim2 = [4*1024]
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
values = list(product(dim1, dim2))
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2", values, ids=names)
def test_double_quant(dim1, dim2):
for i in range(k):
A = torch.randn(dim1, dim2, device="cuda").half()
2022-07-22 21:41:05 +00:00
out_col1, Scol = F.vectorwise_quant(A, dim=0)
out_row1, Srow = F.vectorwise_quant(A, dim=1)
CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
# max difference is 1 due to rounding differences
torch.testing.assert_close(CA, out_row1, atol=1, rtol=0)
torch.testing.assert_close(CAt, out_col1, atol=1, rtol=0)
2022-07-22 21:41:05 +00:00
n = CAt.numel()
num_not_close_rows = (
(torch.isclose(CA, out_row1, atol=1) == 0).sum().item()
)
num_not_close_cols = (
(torch.isclose(CAt, out_col1, atol=1) == 0).sum().item()
)
2022-07-22 21:41:05 +00:00
# allow for 1:500 error due to rounding differences
min_error = 1 / 500
if num_not_close_cols > (min_error * n):
print(
f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols/n:.4f}"
)
2022-07-22 21:41:05 +00:00
assert False
if num_not_close_rows > (min_error * n):
print(
f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows/n:.4f}"
)
2022-07-22 21:41:05 +00:00
assert False
torch.testing.assert_close(Srow.flatten().float(), statsA)
torch.testing.assert_close(Scol.flatten().float(), statsAt)
2022-07-22 21:41:05 +00:00
n = 4
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim4 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
inner = torch.randint(1, 4 * 1024, size=(n,)).tolist()
2022-07-22 21:41:05 +00:00
values = list(zip(dim1, dim4, inner))
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
def test_integrated_igemmlt(dim1, dim4, inner):
for i in range(k):
A = torch.randn(dim1, inner, device="cuda").half()
B = torch.randn(dim4, inner, device="cuda").half()
2022-07-22 21:41:05 +00:00
out1 = torch.matmul(A.half(), B.t().half())
C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A)
C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B)
A1, maxA = F.vectorwise_quant(A, dim=1)
B1, maxB = F.vectorwise_quant(B, dim=1)
torch.testing.assert_close(maxA.flatten().float(), stats1a)
torch.testing.assert_close(maxB.flatten().float(), stats2a)
torch.testing.assert_close(C1a, A1, rtol=0, atol=1)
torch.testing.assert_close(C2a, B1, rtol=0, atol=1)
2022-07-22 21:41:05 +00:00
A2, SA = F.nvidia_transform(C1a, "col32")
B2, SB = F.nvidia_transform(C2a, "col_turing")
2022-07-22 21:41:05 +00:00
outC32, SC = F.igemmlt(A2, B2, SA, SB)
out2 = F.mm_dequant(outC32, SC, stats1a, stats2a)
A2, SA = F.nvidia_transform(A1, "col32")
B2, SB = F.nvidia_transform(B1, "col_turing")
2022-07-22 21:41:05 +00:00
C2, SC = F.igemmlt(A2, B2, SA, SB)
C3, S = F.nvidia_transform(C2, "row", state=SC)
2022-07-22 21:41:05 +00:00
out3 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t())
err1 = torch.abs(out1 - out2).mean().item()
err2 = torch.abs(out1 - out3).mean().item()
assert err2 <= err1 * 1.025
2022-07-22 21:41:05 +00:00
n = 6
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim4 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
inner = torch.randint(1, 4 * 1024, size=(n,)).tolist()
2022-07-22 21:41:05 +00:00
values = list(zip(dim1, dim4, inner))
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
@pytest.mark.skip("Row scale has some bugs for ampere")
2022-07-22 21:41:05 +00:00
def test_igemmlt_row_scale(dim1, dim4, inner):
formatB = F.get_special_format_str()
err1, err2, err3 = [], [], []
relerr1, relerr2 = [], []
scale = 1
for i in range(k):
A = torch.randn(dim1, inner, device="cuda").half()
B = torch.randn(dim4, inner, device="cuda").half()
2022-07-22 21:41:05 +00:00
torch.nn.init.xavier_uniform_(B)
C1 = torch.matmul(A, B.t())
out1 = torch.matmul(A.half(), B.t().half())
C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A)
CB, absmaxB = F.vectorwise_quant(B, quant_type="linear")
A2, SA = F.nvidia_transform(C1a, "col32")
2022-07-22 21:41:05 +00:00
B2, SB = F.nvidia_transform(CB, formatB)
A1, maxA = F.vectorwise_quant(A, dim=1)
c = 10.0 * inner * scale
row_scale = torch.ones_like(maxA) / c
outC32, SC = F.igemmlt(
A2, B2, SA, SB, dtype=torch.int8, row_scale=row_scale
)
C3, S = F.nvidia_transform(outC32, "row", state=SC)
2022-07-22 21:41:05 +00:00
maxval = torch.abs(C3).max()
if maxval == 127:
scale = 1.5
else:
scale = maxval / 120
out3 = C3 * maxA * absmaxB * c / (127 * 127)
2022-07-22 21:41:05 +00:00
C4 = torch.matmul(C1a.float(), CB.float().t())
C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B)
B2, SB = F.nvidia_transform(C2a, formatB)
outC32, SC = F.igemmlt(A2, B2, SA, SB)
out2 = F.mm_dequant(outC32, SC, stats1a, stats2a)
CA, SA = F.vectorwise_quant(A, dim=1, quant_type="vector")
CB, SB = F.vectorwise_quant(B, dim=1, quant_type="linear")
2022-07-22 21:41:05 +00:00
C = torch.matmul(CA.float(), CB.t().float())
out4 = C * SA * SB / (127 * 127)
# out4 = torch.clip(torch.round(C*SA/c), -127, 127)*c*SB/(127*127)
2022-07-22 21:41:05 +00:00
# print('='*80)
# print(out1)
# print(out2)
# print(out3)
2022-07-22 21:41:05 +00:00
# print(out1)
# print(out2)
# print(out3)
err1.append(torch.abs(out1 - out2).mean().item())
err2.append(torch.abs(out1 - out3).mean().item())
err3.append(torch.abs(out1 - out4).mean().item())
2022-07-22 21:41:05 +00:00
# assert_all_approx_close(C3.float(), torch.round(C4*row_scale), rtol=0, atol=0, count=10)
print("")
print(sum(err1) / len(err1))
print(sum(err2) / len(err2))
print(sum(err3) / len(err3))
2022-07-22 21:41:05 +00:00
dim1 = [1024, 2048]
inner = [12288 * 4, 4096 * 4]
2022-07-22 21:41:05 +00:00
dim4 = [12288, 4096]
values = list(zip(dim1, dim4, inner))
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
@pytest.mark.skip("Row scale has some bugs for ampere")
2022-07-22 21:41:05 +00:00
def test_row_scale_bench(dim1, dim4, inner):
err1, err2, err3 = [], [], []
relerr1, relerr2 = [], []
scale = 1
A = torch.randn(dim1, inner, device="cuda").half()
B = torch.randn(dim4, inner, device="cuda").half()
2022-07-22 21:41:05 +00:00
torch.nn.init.xavier_uniform_(B)
# warmpup
for i in range(k):
C1 = torch.matmul(A, B.t())
torch.cuda.synchronize()
t0 = time.time()
for i in range(k):
C1 = torch.matmul(A, B.t())
torch.cuda.synchronize()
print("16", time.time() - t0)
2022-07-22 21:41:05 +00:00
C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A)
CB, absmaxB = F.vectorwise_quant(B, quant_type="linear")
A2, SA = F.nvidia_transform(C1a, "col32")
2022-07-22 21:41:05 +00:00
B2, SB = F.nvidia_transform(CB, formatB)
A1, maxA = F.vectorwise_quant(A, dim=1)
c = 10.0 * inner * scale
row_scale = maxA / c
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
for i in range(k):
outC32, SC = F.igemmlt(
A2, B2, SA, SB, dtype=torch.int8, row_scale=row_scale
)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
print("row-wise", time.time() - t0)
2022-07-22 21:41:05 +00:00
C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B)
B2, SB = F.nvidia_transform(C2a, formatB)
torch.cuda.synchronize()
t0 = time.time()
for i in range(k):
outC32, SC = F.igemmlt(A2, B2, SA, SB)
torch.cuda.synchronize()
print("vector-wise", time.time() - t0)
2022-07-22 21:41:05 +00:00
n = 2
dim1 = torch.randint(2, 1024, size=(n,)).tolist()
dim2 = torch.randint(2, 1024, size=(n,)).tolist()
# dim1 = [8*1024]
# dim2 = [4*1024]
2022-07-22 21:41:05 +00:00
dim3 = [0]
dtype = [torch.int8]
a_order = ["row"]
out_order = ["col32", "col_turing", "col_ampere"]
2022-07-22 21:41:05 +00:00
transpose = [False, True]
dims = [2]
values = list(
product(dim1, dim2, dim3, dims, dtype, a_order, out_order, transpose)
)
names = [
"dim1_{}_dim2_{}_dim3_{}_dims_{}_dtype_{}_orderA_{}_orderOut_{}_{}".format(
*vals
)
for vals in values
]
@pytest.mark.parametrize(
"dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose",
values,
ids=names,
)
2022-07-22 21:41:05 +00:00
def test_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose):
for i in range(k):
if dims == 2:
A = torch.randint(10, 99, size=(dim1, dim2), device="cuda").to(
dtype
)
2022-07-22 21:41:05 +00:00
elif dims == 3:
A = torch.randint(
10, 99, size=(dim1, dim2, dim3), device="cuda"
).to(dtype)
2022-07-22 21:41:05 +00:00
A.view(-1)[-1] = -1
if transpose:
At = A.t().contiguous()
out1, S1 = F.nvidia_transform(At, to_order=orderOut)
else:
out1, S1 = F.nvidia_transform(A, to_order=orderOut)
out2, S2 = F.transform(A, to_order=orderOut, transpose=transpose)
assert S1[0][0] == S2[0][0]
assert S1[0][1] == S2[0][1]
# print(out1)
# print(out2)
2022-07-22 21:41:05 +00:00
torch.testing.assert_close(out1, out2)
2022-07-22 21:41:05 +00:00
2022-07-22 21:41:05 +00:00
n = 2
# dim1 = torch.randint(2,1024, size=(n,)).tolist()
# dim2 = torch.randint(2,1024, size=(n,)).tolist()
2022-07-22 21:41:05 +00:00
dim1 = [1]
dim2 = [33]
dtype = [torch.int8]
# a_order = ['col_turing', 'col_ampere']
a_order = ["col_turing"]
out_order = ["row"]
values = list(product(dim1, dim2, dtype, a_order, out_order))
names = [
"dim1_{}_dim2_{}_dtype_{}_orderA_{}_orderOut_{}".format(*vals)
for vals in values
]
2022-07-22 21:41:05 +00:00
def test_overflow():
formatB = F.get_special_format_str()
print(formatB)
2022-07-22 21:41:05 +00:00
for i in range(2):
a = torch.arange(5, 15).cuda().to(torch.int8).view(-1, 1)
b = torch.arange(5, 15).cuda().to(torch.int8).view(-1, 1)
2022-07-22 21:41:05 +00:00
Ca, Sa = F.nvidia_transform(a, "col32")
2022-07-22 21:41:05 +00:00
Cb, Sb = F.nvidia_transform(b, formatB)
c = F.igemmlt(Ca, Cb, Sa, Sb, dtype=torch.int8)
c2 = torch.matmul(a.float(), b.float().t())
n = 2
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
# dim1 = [4]
# dim2 = [5]
values = list(product(dim1, dim2))
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2", values, ids=names)
def test_coo_double_quant(dim1, dim2):
threshold = 3.00
for i in range(k):
A = torch.randn(dim1, dim2, device="cuda").half()
2022-07-22 21:41:05 +00:00
idx = torch.abs(A) >= threshold
2022-07-22 21:41:05 +00:00
CA2, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(
A, threshold=threshold
)
2022-07-22 21:41:05 +00:00
if coo_tensor is not None:
A1 = A * idx
2022-07-22 21:41:05 +00:00
A2 = torch.zeros_like(A)
A2[
coo_tensor.rowidx.long(), coo_tensor.colidx.long()
] = coo_tensor.values
torch.testing.assert_close(A1, A2)
2022-07-22 21:41:05 +00:00
A1 = A * (idx == 0)
A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
torch.testing.assert_close(
A * (idx == 0), A2, rtol=0.05, atol=1.5e-2
)
2022-07-22 21:41:05 +00:00
n = 2
dim1 = torch.randint(1, 1 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 1 * 1024, size=(n,)).tolist()
# dim1 = [7]
# dim2 = [11]
2022-07-22 21:41:05 +00:00
transposed_B = [False, True]
values = list(product(dim1, dim2, transposed_B))
names = ["dim1_{}_dim2_{}_transposed_B_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2, transposed_B", values, ids=names)
def test_spmm_coo(dim1, dim2, transposed_B):
threshold = 1.5
dim3 = torch.randint(32, 128, size=(1,)).item()
# dim3 = 17
2022-07-22 21:41:05 +00:00
for i in range(k):
A = torch.randn(dim1, dim2).cuda().half()
if transposed_B:
B = torch.randn(dim3, dim2).cuda().half()
else:
B = torch.randn(dim2, dim3).cuda().half()
idx = torch.abs(A) >= threshold
nnz = (idx == 1).sum().item()
rows, cols = torch.where(idx)
values = A[idx]
cooA = F.COOSparseTensor(
A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
)
A2 = A * idx
2022-07-22 21:41:05 +00:00
if transposed_B:
out2 = F.spmm_coo(cooA, B.t())
out1 = torch.matmul(A2, B.t())
else:
out2 = F.spmm_coo(cooA, B)
out1 = torch.matmul(A2, B)
assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=30)
def test_spmm_bench():
batch = 2
model = 1024 * 1
hidden = model * 4
2022-07-22 21:41:05 +00:00
seq = 1024
dim1 = batch * seq
2022-07-22 21:41:05 +00:00
dim2 = model
dim3 = hidden
threshold = 4
A = torch.randn(dim1, dim2, device="cuda").half()
B = torch.randn(dim2, dim3, device="cuda").half()
2021-10-06 02:16:20 +00:00
for i in range(10):
C1 = bnb.matmul(A, B.t())
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
for i in range(k):
C1 = bnb.matmul(A, B.t())
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t8 = time.time() - t0
2022-07-22 21:41:05 +00:00
idx = torch.abs(A) >= threshold
nnz = (idx == 1).sum().item()
print(nnz / idx.numel())
2022-07-22 21:41:05 +00:00
rows, cols = torch.where(idx)
values = A[idx]
cooA = F.COOSparseTensor(
A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
)
2021-10-06 02:16:20 +00:00
for i in range(10):
2022-07-22 21:41:05 +00:00
out2 = F.spmm_coo(cooA, B)
torch.cuda.synchronize()
t0 = time.time()
for i in range(k):
out2 = F.spmm_coo(cooA, B)
torch.cuda.synchronize()
tsp = time.time() - t0
2022-07-22 21:41:05 +00:00
print(tsp, t8)
print(tsp / t8)
2022-07-22 21:41:05 +00:00
n = 2
dim1 = torch.randint(256, 1 * 1024, size=(n,)).tolist()
dim2 = torch.randint(256, 1 * 1024, size=(n,)).tolist()
values = list(product(dim1, dim2))
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2", values, ids=names)
def test_integrated_sparse_decomp(dim1, dim2):
threshold = 3.0
formatB = "col_turing"
2022-07-22 21:41:05 +00:00
for i in range(k):
A = torch.randn(dim1, dim2).cuda().half()
w1 = torch.randn(dim1, dim2).cuda().half()
out1 = torch.matmul(A, w1.t())
Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
CTw1, Sw1 = F.transform(Cw1, formatB)
CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
C32A, SA = F.transform(CA, "col32")
2022-07-22 21:41:05 +00:00
out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1)
out2 = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1)
CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(
A, threshold=threshold
)
C32A, SA = F.transform(CA, "col32")
2022-07-22 21:41:05 +00:00
out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1)
out3 = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1)
assert coo_tensor is not None
out4 = F.spmm_coo(coo_tensor, w1.t())
out5 = out3 + out4
err1 = torch.abs(out1 - out2).mean().item()
err2 = torch.abs(out1 - out5).mean().item()
2022-07-22 21:41:05 +00:00
assert err2 < err1
def test_matmuls():
a = torch.randn(256, 512).half().cuda()
b = torch.randn(256, 512).half().cuda()
c1 = torch.matmul(a, b.t())
2022-07-22 21:41:05 +00:00
c2 = bnb.matmul(a, b)
c3 = bnb.matmul_cublas(a, b.t())
2022-07-22 21:41:05 +00:00
err1 = torch.abs(c1 - c2).mean().item()
err2 = torch.abs(c1 - c3).mean().item()
2022-07-22 21:41:05 +00:00
assert err1 < 0.2
assert err2 < 0.2
print(err1, err2)
2022-07-22 21:41:05 +00:00
n = 2
# dim1 = torch.randint(1,1*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
dim1 = [1 * 2048]
2022-07-22 21:41:05 +00:00
dim2 = [12288]
# dim1 = [32]
# dim2 = [32]
# dtype = [torch.float16, torch.int8]
2022-07-22 21:41:05 +00:00
dtype = [torch.float16]
out_function = ["zeros", "ones"]
values = list(product(dim1, dim2, dtype, out_function))
names = [
"dim1_{}_dim2_{}_dtype_{}_out_func_{}".format(*vals) for vals in values
]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2, dtype, out_func", values, ids=names)
def test_spmm_coo_very_sparse(dim1, dim2, dtype, out_func):
out_func = getattr(torch, out_func)
threshold = 3.3
# threshold = 2.8
# threshold = 0.0
A = torch.randn(dim1, dim2, device="cuda").half()
2022-07-22 21:41:05 +00:00
if dtype == torch.float16:
B = torch.randn(dim2, dim2 * 4, device="cuda").half()
2022-07-22 21:41:05 +00:00
torch.nn.init.xavier_uniform_(B)
else:
B = torch.randn(dim2, dim2 * 4, device="cuda").half()
2022-07-22 21:41:05 +00:00
torch.nn.init.xavier_uniform_(B)
B, SB = F.vectorwise_quant(B, quant_type="linear")
# B = torch.randint(-127, 127, size=(dim2, dim2*4), device='cuda').to(torch.int8)
2022-07-22 21:41:05 +00:00
print("")
2022-07-22 21:41:05 +00:00
idx = torch.abs(A) >= threshold
nnz = (idx == 1).sum().item()
rows, cols = torch.where(idx)
values = A[idx]
cooA = F.COOSparseTensor(
A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
)
A2 = A * idx
2022-07-22 21:41:05 +00:00
out1 = torch.matmul(A2.half(), B.half())
out = out_func(out1.shape, dtype=torch.float16, device=out1.device)
out1 += out.clone()
out2 = F.spmm_coo_very_sparse(cooA, B, out=out)
# print(B)
# print(out1)
# print(out2)
p = 200 / (2048 * 12288 * 4)
2022-07-22 21:41:05 +00:00
n = out1.numel()
count = math.ceil(p * n)
2022-07-22 21:41:05 +00:00
std = out1.std()
out1 /= std
out2 /= std
assert_all_approx_close(
out1, out2.half(), rtol=0.01, atol=3.0e-2, count=count
)
# assert_all_approx_close(out1, out2.half(), rtol=0.05, atol=0.01, count=count)
2022-07-22 21:41:05 +00:00
idx_col = torch.randint(0, A2.shape[-1], size=(15,))
# torch.testing.assert_close(out1, out2.half(), rtol=0.05, atol=0.001)
2022-07-22 21:41:05 +00:00
# Bt = torch.randn(dim2*4, dim2, device='cuda').half()
# torch.cuda.synchronize()
# t0 = time.time()
# print(A2.shape, B.shape)
# for i in range(100):
2022-07-22 21:41:05 +00:00
# #out3 = F.spmm_coo(cooA, Bt.t())
# #out2 = F.spmm_coo(cooA, B)
# #out2 = F.spmm_coo_very_sparse(cooA, B)
# #out1 = torch.matmul(A, Bt.t())
# torch.cuda.synchronize()
# print(time.time() - t0)
2022-07-22 21:41:05 +00:00
def test_coo2csr():
threshold = 1
A = torch.randn(128, 128).half().cuda()
idx = torch.abs(A) >= threshold
nnz = (idx == 1).sum().item()
rows, cols = torch.where(idx)
values = A[idx]
cooA = F.COOSparseTensor(
A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
)
A2 = A * idx
2022-07-22 21:41:05 +00:00
csrA = F.coo2csr(cooA)
counts = csrA.rowptr[1:] - csrA.rowptr[:-1]
assert counts.numel() == A.shape[0]
torch.testing.assert_close(counts.long(), (A2 != 0).sum(1))
idx = A2 != 0
torch.testing.assert_close(A2[idx], csrA.values)
2022-07-22 21:41:05 +00:00
def test_coo2csc():
threshold = 1
A = torch.randn(128, 128).half().cuda()
idx = torch.abs(A) >= threshold
nnz = (idx == 1).sum().item()
rows, cols = torch.where(idx)
values = A[idx]
cooA = F.COOSparseTensor(
A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
)
A2 = A * idx
2022-07-22 21:41:05 +00:00
cscA = F.coo2csc(cooA)
counts = cscA.colptr[1:] - cscA.colptr[:-1]
assert counts.numel() == A.shape[1]
torch.testing.assert_close(counts.long(), (A2 != 0).sum(0))
2022-07-22 21:41:05 +00:00
# torch uses row-major -> use transpose to transfer to col-major
idx = A2.t() != 0
torch.testing.assert_close(A2.t()[idx], cscA.values)
2022-07-22 21:41:05 +00:00
n = 2
# dim1 = torch.randint(1,1*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
dim1 = [1 * 2048]
# dim2 = [12288]
2022-07-22 21:41:05 +00:00
dim2 = [2048]
# dim1 = [2]
# dim2 = [2]
2022-07-22 21:41:05 +00:00
dtype = [torch.int8]
values = list(product(dim1, dim2, dtype))
names = ["dim1_{}_dim2_{}_dtype_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("dim1, dim2, dtype", values, ids=names)
def test_spmm_coo_dequant(dim1, dim2, dtype):
threshold = 6.0
# threshold = 2.8
# threshold = 0.0
A = torch.randn(dim1, dim2, device="cuda").half()
B = torch.empty(dim2, dim2 * 4, device="cuda", dtype=torch.float16)
2022-07-22 21:41:05 +00:00
torch.nn.init.xavier_uniform_(B)
Bt = B.t().contiguous()
CB, CBt, statsB, statsBt, coo_tensor = F.double_quant(B)
rowidx = torch.randint(0, A.shape[-1], size=(15,))
A[:, rowidx] = 8.0
idx = torch.abs(A) >= threshold
nnz = (idx == 1).sum().item()
rows, cols = torch.where(idx)
values = A[idx]
cooA = F.COOSparseTensor(
A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
)
A2 = A * idx
2022-07-22 21:41:05 +00:00
out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
out1 = torch.matmul(A2, B.half())
out3 = F.spmm_coo_very_sparse(cooA, CBt.half())
out3 = out3 * statsBt.half() / 127
2022-07-22 21:41:05 +00:00
values, counts = torch.unique(cooA.rowidx, return_counts=True)
offset = counts.cumsum(0).int()
max_count, max_idx = torch.sort(counts, descending=True)
print(torch.median(max_count.float()))
torch.testing.assert_close(out2, out3, rtol=0.05, atol=0.001)
2022-07-22 21:41:05 +00:00
p = 200 / (2048 * 12288 * 4)
2022-07-22 21:41:05 +00:00
n = out1.numel()
count = math.ceil(p * n)
2022-07-22 21:41:05 +00:00
assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=count)
# torch.cuda.synchronize()
# t0 = time.time()
# for i in range(100):
2022-07-22 21:41:05 +00:00
# out2 = F.spmm_coo_very_sparse(cooA, B)
# torch.cuda.synchronize()
# print('fp16', time.time() - t0)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
for i in range(100):
out2 = F.spmm_coo(cooA, B)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
print("cusparse fp16", time.time() - t0)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
for i in range(100):
out2 = F.spmm_coo_very_sparse(cooA, CBt)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
print("int8", time.time() - t0)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
for i in range(100):
out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
print("int8+dequant", time.time() - t0)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
for i in range(100):
out2 = torch.matmul(A, B)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
print("matmul", time.time() - t0)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
for i in range(100):
out1 = bnb.matmul(A, Bt)
out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
out = out1 + out2
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
print("sparse+ matmul", time.time() - t0)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
for i in range(100):
out1 = bnb.matmul(A, Bt)
torch.matmul(A[:, rowidx], Bt.t()[rowidx], out=out1)
torch.cuda.synchronize()
print("partial matmul", time.time() - t0)
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
for i in range(100):
out1 = bnb.matmul(A, Bt)
torch.cuda.synchronize()
print("partial matmul", time.time() - t0)
2022-07-22 21:41:05 +00:00
2023-05-24 01:42:19 +00:00
batch_size = 1
seqdim = 1
2022-07-22 21:41:05 +00:00
values = []
2023-05-24 01:42:19 +00:00
#values.append((batch_size, seqdim, 768, 4 * 768))
#values.append((batch_size, seqdim, 1024, 4*1024))
#values.append((batch_size, seqdim, 1536, 4*1536))
#values.append((batch_size, seqdim, 2048, 4*2048))
#values.append((batch_size, seqdim, 2560, 4*2560))
2023-05-24 01:42:19 +00:00
values.append((batch_size, seqdim, 4096, 4*4096))
values.append((batch_size, seqdim, 5120, 4*5120))
values.append((batch_size, seqdim, 6656, 4*6656))
values.append((batch_size, seqdim, 8192, 4*8192))
#values.append((batch_size, seqdim, 5140, 4*5140))
#values.append((batch_size, seqdim, 12288, 4*12288))
2023-02-05 06:00:04 +00:00
names = ["batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values]
2022-07-22 21:41:05 +00:00
@pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names)
def test_bench_matmul(batch, seq, model, hidden):
2023-05-24 01:42:19 +00:00
iters = 80
2022-07-22 21:41:05 +00:00
formatB = F.get_special_format_str()
A = torch.randn(batch, seq, model, device="cuda").half()
B = torch.empty(hidden, model, dtype=torch.float16, device="cuda")
2022-07-22 21:41:05 +00:00
torch.nn.init.xavier_uniform_(B)
2023-02-05 06:00:04 +00:00
B_fp4, state = F.quantize_fp4(B)
B_fp4_c, state_c = F.quantize_fp4(B, compress_statistics=True)
2023-02-05 06:00:04 +00:00
B_nf4, state_nf4= F.quantize_nf4(B)
2023-05-24 01:42:19 +00:00
linear8bit = bnb.nn.Linear8bitLt(model, hidden, False, False).cuda().half()
2022-07-22 21:41:05 +00:00
linear8bit.eval()
outliers = torch.randint(0, model, size=(5,)).cuda()
A[:, :, outliers] = 8.0
2023-05-24 01:42:19 +00:00
linearMixedBit = (bnb.nn.Linear8bitLt(model, hidden, False, False, threshold=6.0).cuda().half())
#linearMixedBit.eval()
2022-07-22 21:41:05 +00:00
2023-02-05 06:00:04 +00:00
linear8bit_train = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half()
linear8bit_train_thresh = bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half()
2022-07-22 21:41:05 +00:00
# warmup
2022-08-23 20:59:34 +00:00
for i in range(iters):
2022-07-22 21:41:05 +00:00
torch.matmul(A, B.t())
torch.cuda.synchronize()
print("")
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
2022-08-23 20:59:34 +00:00
for i in range(iters):
2022-07-22 21:41:05 +00:00
torch.matmul(A, B.t())
torch.cuda.synchronize()
2023-02-05 06:00:04 +00:00
print( f"pytorch fp16: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" )
torch.cuda.synchronize()
t0 = time.time()
for i in range(iters):
bnb.matmul_4bit(A, B_fp4.t(), quant_state=state)
2023-02-05 06:00:04 +00:00
torch.cuda.synchronize()
print( f"bnb fp4: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" )
2022-07-22 21:41:05 +00:00
torch.cuda.synchronize()
t0 = time.time()
for i in range(iters):
bnb.matmul_4bit(A, B_fp4.t(), quant_state=state_c)
torch.cuda.synchronize()
print( f"bnb fp4 + compressed stats: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" )
torch.cuda.synchronize()
t0 = time.time()
for i in range(iters):
bnb.matmul_4bit(A, B_nf4.t(), quant_state=state_nf4)
torch.cuda.synchronize()
print( f"bnb nf4: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" )
2023-03-27 16:12:57 +00:00
#torch.cuda.synchronize()
#t0 = time.time()
#for i in range(iters):
# bnb.matmul(A, B)
#torch.cuda.synchronize()
#print(f"CB -> CxB conversion (each iteration): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
#torch.cuda.synchronize()
#t0 = time.time()
#for i in range(iters):
# bnb.matmul(A, B, threshold=6.0)
#torch.cuda.synchronize()
#print(f"CB -> CxB conversion + threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
#CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=0.0)
#C32A, SA = F.transform(CA, "col32")
#CB, CBt, SCB, SCBt, coo_tensorB = F.double_quant(B)
#CxB, SB = F.transform(CB, to_order=formatB)
#torch.cuda.synchronize()
#t0 = time.time()
#for i in range(iters):
# out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
#torch.cuda.synchronize()
#print(f"no overhead matmul-lt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
#BA, statsB = F.vectorwise_quant(B, dim=1)
#CxB, SB = F.nvidia_transform(CB, to_order=formatB)
#torch.cuda.synchronize()
#t0 = time.time()
#for i in range(iters):
# A2 = A.view(-1, A.shape[-1]).contiguous()
# CA, statsA = F.vectorwise_quant(A2, dim=1)
# C32A, SA = F.nvidia_transform(CA, "col32")
# out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
# Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32)
# F.vectorwise_mm_dequant(Cout, statsA, statsB.t())
#torch.cuda.synchronize()
#print(f"vector pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
#BA, statsB = F.vectorwise_quant(B, dim=1, quant_type="linear")
#CxB, SB = F.nvidia_transform(CB, to_order=formatB)
#torch.cuda.synchronize()
#t0 = time.time()
#for i in range(iters):
# A2 = A.view(-1, A.shape[-1]).contiguous()
# CA, statsA = F.vectorwise_quant(A2, dim=1, quant_type="linear")
# C32A, SA = F.nvidia_transform(CA, "col32")
# out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
# Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32)
# out = Cout * statsB * statsA * (1.0 / (127 * 127))
#torch.cuda.synchronize()
#print(f"linear pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
2023-05-24 01:42:19 +00:00
linear8bit(A)
torch.cuda.synchronize()
t0 = time.time()
for i in range(iters):
linear8bit(A)
torch.cuda.synchronize()
print( f"bnb linear8bitlt (eval): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
2023-03-27 16:12:57 +00:00
2023-05-24 01:42:19 +00:00
linearMixedBit(A)
torch.cuda.synchronize()
t0 = time.time()
for i in range(iters):
linearMixedBit(A)
torch.cuda.synchronize()
print( f"bnb linear8bitlt with threshold (eval): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
2023-03-27 16:12:57 +00:00
#linear8bit_train(A)
#torch.cuda.synchronize()
#t0 = time.time()
#for i in range(iters):
# linear8bit_train(A)
#torch.cuda.synchronize()
#print( f"bnb linear8bitlt (training): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
#linear8bit_train_thresh(A)
#torch.cuda.synchronize()
#t0 = time.time()
#for i in range(iters):
# linear8bit_train(A)
#torch.cuda.synchronize()
#print( f"bnb linear8bitlt with threshold (training): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
2022-07-22 21:41:05 +00:00
def test_zeropoint():
def quant_zp(x):
dtype = x.dtype
x = x.float()
dyna = x.max() - x.min()
if dyna == 0:
dyna = 1
qx = 254.0 / dyna
2022-07-22 21:41:05 +00:00
minx = x.min()
# zpx = torch.round(minx* qx)
# zpx = 127 - torch.round(x.max()* qx)
zpx = torch.round(x.min() * qx) - 127
x = (qx * x) + zpx
2022-07-22 21:41:05 +00:00
return x, qx, zpx
2022-07-22 21:41:05 +00:00
batch = 2
seq = 512
model = 1024
hidden = 4 * model
A = torch.randn(batch * seq, model, device="cuda").half() * 0.1
B = torch.randn(model, hidden, device="cuda").half() * 0.1
2022-07-22 21:41:05 +00:00
C0 = torch.matmul(A, B)
# A, SA = F.vectorwise_quant(A, quant_type='linear')
# B, SB = F.vectorwise_quant(B, quant_type='linear')
2022-07-22 21:41:05 +00:00
A = A.float()
B = B.float()
C1 = torch.matmul(A, B)
C3 = bnb.matmul(A.half(), B.t().contiguous().half())
zp = 1
# C2 = torch.matmul(A-zp, B)
# C2 += B.sum(0).view(1, -1)*zp
C2 = torch.matmul(A, B - zp)
C2 -= A.sum(1).view(-1, 1) * zp
2022-07-22 21:41:05 +00:00
ca, cqa, cza = quant_zp(A)
print(ca.min(), ca.max())
print((ca - cza).min(), (ca - cza).max())
2022-07-22 21:41:05 +00:00
zp = 1
scale = 2.0
C5 = torch.matmul((A * scale) - zp, B)
C5 += B.sum(0) * zp
2022-07-22 21:41:05 +00:00
C5 /= scale
CA, qa, zpa = quant_zp(A)
C4 = torch.matmul(CA, B)
C4 -= B.sum(0) * zpa
2022-07-22 21:41:05 +00:00
C4 /= qa
2021-10-06 02:16:20 +00:00
2022-07-22 21:41:05 +00:00
zpb = 1
zpa = 1
qa = 2
qb = 2
C6 = torch.matmul((A * qa) + zpa, (B * qb) + zpb)
C6 -= (qb * B.sum(0).view(1, -1) * zpa) + (qa * A.sum(1).view(-1, 1) * zpb)
C6 -= zpa * zpb * A.shape[1]
C6 /= qa * qb
2021-10-06 02:16:20 +00:00
2022-07-22 21:41:05 +00:00
CA, qa, zpa = quant_zp(A)
CB, qb, zpb = quant_zp(B)
C7 = torch.matmul(CA, CB)
C7 -= (qb * B.sum(0).view(1, -1) * zpa) + (qa * A.sum(1).view(-1, 1) * zpb)
C7 -= zpa * zpb * A.shape[1]
C7 /= qa * qb
2021-10-06 02:16:20 +00:00
print("")
# print(C0.flatten()[:10])
2022-07-22 21:41:05 +00:00
print(C1.flatten()[:10])
print(C2.flatten()[:10])
print(C3.flatten()[:10])
print(C5.flatten()[:10])
print(C6.flatten()[:10])
print(C7.flatten()[:10])
err1 = torch.abs(C1 - C2).mean().item()
err2 = torch.abs(C1 - C3).mean().item()
err3 = torch.abs(C1 - C4).mean().item()
err4 = torch.abs(C1 - C5).mean().item()
err5 = torch.abs(C1 - C6).mean().item()
err6 = torch.abs(C1 - C7).mean().item()
2022-07-22 21:41:05 +00:00
print(err1, err2, err3, err4, err5, err6)
2021-10-06 02:16:20 +00:00
def test_extract_outliers():
2022-07-27 00:39:30 +00:00
for i in range(k):
shapeA = (4096, 4096 * 4)
2022-07-27 00:39:30 +00:00
idx = torch.unique(torch.randint(0, shapeA[1], size=(10,)).int()).cuda()
# idx = torch.Tensor([0]).int().cuda()
A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
2022-07-27 00:39:30 +00:00
outliers1 = A[:, idx.long()]
CA, SA = F.transform(A, "col_turing")
2022-07-27 00:39:30 +00:00
outliers2 = F.extract_outliers(CA, SA, idx)
2022-07-27 00:39:30 +00:00
assert outliers2.shape[0] == shapeA[0]
assert outliers2.shape[1] == idx.numel()
torch.testing.assert_close(outliers1, outliers2)
CA, SA = F.transform(A, "col_ampere")
outliers2 = F.extract_outliers(CA, SA, idx)
assert outliers2.shape[0] == shapeA[0]
assert outliers2.shape[1] == idx.numel()
torch.testing.assert_close(outliers1, outliers2)
def test_blockwise_cpu_large():
diffs = []
reldiffs = []
batch = 128
seq = 128
for hidden in [128]:#, 14336]:
for blocksize in [4096, 16384]:
for i in range(2):
A1 = torch.randn(batch, seq, hidden, device='cpu')
t0 = time.time()
C, S = F.quantize_blockwise(A1, blocksize=blocksize)
A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
print(time.time() - t0)
diff = torch.abs(A1 - A2)
reldiff = diff / torch.abs(A1 + 1e-8)
diffs.append(diff.mean().item())
reldiffs.append(reldiff.mean().item())
assert diffs[-1] < 0.011
# print(sum(diffs)/len(diffs))
# print(sum(reldiffs)/len(reldiffs))
2022-11-04 02:49:50 +00:00
def test_fp8_quant():
for e_bits in range(1, 7):
p_bits = 7-e_bits
code = F.create_fp8_map(True, e_bits, p_bits).cuda()
abserr = []
relerr = []
for i in range(100):
A1 = torch.randn(1024, 1024, device="cuda")
C, SC = F.quantize_blockwise(A1, code=code)
A2 = F.dequantize_blockwise(C, SC)
diff = torch.abs(A1 - A2)
reldiff = diff/torch.abs(A1+1e-8)
abserr.append(diff.mean().item())
relerr.append(reldiff.mean().item())
#assert diff < 0.0075
#print(sum(abserr)/len(abserr))
#print(sum(relerr)/len(relerr))
2022-11-04 02:49:50 +00:00
abserr = []
relerr = []
for i in range(100):
A1 = torch.rand(1024, 1024, device="cuda")
C, SC = F.quantize_blockwise(A1, code=code)
A2 = F.dequantize_blockwise(C, SC)
diff = torch.abs(A1 - A2)
reldiff = diff/torch.abs(A1+1e-8)
abserr.append(diff.mean().item())
relerr.append(reldiff.mean().item())
#assert diff < 0.0075
#print(sum(abserr)/len(abserr))
#print(sum(relerr)/len(relerr))
2022-11-04 02:49:50 +00:00
abserr = []
relerr = []
for i in range(100):
A1 = torch.randn(1024, 1024, device="cuda")
C, SC = F.quantize_blockwise(A1)
A2 = F.dequantize_blockwise(C, SC)
diff = torch.abs(A1 - A2)
reldiff = diff/torch.abs(A1+1e-8)
abserr.append(diff.mean().item())
relerr.append(reldiff.mean().item())
#assert diff < 0.0075
#print(3, sum(abserr)/len(abserr))
#print(3, sum(relerr)/len(relerr))
2022-11-04 02:49:50 +00:00
2022-11-06 19:47:54 +00:00
def test_few_bit_quant():
#print('')
2022-11-06 19:47:54 +00:00
for bits in range(2, 9):
#print('='*30, bits, '='*30)
2022-11-06 21:05:25 +00:00
for method in ['linear', 'fp8', 'dynamic', 'quantile']:
abserrs = []
relerrs = []
2022-11-06 19:59:37 +00:00
code = None
if method == 'linear':
code = F.create_linear_map(True, total_bits=bits).cuda()
2022-11-06 19:59:37 +00:00
elif method == 'fp8':
ebits = math.ceil(bits/2)
pbits = bits-ebits-1
code = F.create_fp8_map(True, ebits, pbits, bits).cuda()
2022-11-06 21:05:25 +00:00
elif method == 'dynamic':
code = F.create_dynamic_map(True, bits-0, bits).cuda()
elif method == 'quantile':
values = torch.randn(2048, 2048, device='cuda')
2022-11-19 15:24:03 +00:00
code = F.create_quantile_map(values, bits).cuda()
# for some data types we have no zero
# for some data types we have one zero
# for some data types we have two zeros
assert torch.unique(code).numel() in [2**bits, 2**bits-1], f'bits: {bits}, method: {method}'
#print(method, (code==0).sum())
2022-11-06 19:59:37 +00:00
assert code.numel() == 256
for i in range(10):
values = torch.randn(1, 32, device='cuda')
values /= values.abs().max()
#values[values.abs() < 1e-6] += 1e-5
q1 = []
v1 = []
for v in values[0]:
idx = torch.abs(v-code).argmin()
q1.append(idx.item())
v1.append(code[idx].item())
q1 = torch.Tensor(q1).cuda()
v1 = torch.Tensor(v1).cuda()
2022-11-19 15:24:03 +00:00
q2, S2 = F.quantize_blockwise(values, code=code)
v2 = F.dequantize_blockwise(q2, S2)
2022-11-06 19:59:37 +00:00
idx = torch.isclose(q1.int(), q2.int())
2022-11-06 21:05:25 +00:00
err2 = torch.abs(v2-values)
abserrs.append(err2.mean().item())
relerrs.append((err2/(1e-10+values).abs()).mean().item())
2022-11-06 19:59:37 +00:00
if idx.sum():
# some weird cases
err1 = torch.abs(v1-values).mean()
2022-11-19 15:24:03 +00:00
#assert err2.mean() <= err1
2022-11-06 19:59:37 +00:00
else:
torch.testing.assert_close(q1, q2)
#print(method, 'abserr:', sum(abserrs)/len(abserrs), 'relerr:', sum(relerrs)/len(relerrs))
2022-11-19 15:24:03 +00:00
#assert False
2022-11-06 21:05:25 +00:00
def test_kbit_quantile_estimation():
for i in range(100):
data = torch.randn(1024, 1024, device='cuda')
for bits in range(2, 9):
p = np.linspace(1.3e-4, 1-1.3e-4, 2**bits)
val1 = torch.Tensor(norm.ppf(p)).cuda()
val2 = F.estimate_quantiles(data, offset=0, num_quantiles=2**bits)
err = torch.abs(val1-val2).mean()
2022-11-19 15:24:03 +00:00
assert err < 0.038
for i in range(100):
data = torch.randn(1024, 1024, device='cuda')
for bits in range(2, 4):
total_values = 2**bits-1
p = np.linspace(0, 1, 2*total_values+1)
idx = np.arange(1, 2*total_values+1, 2)
p = p[idx]
offset = 1/(2*total_values)
p = np.linspace(offset, 1-offset, total_values)
val1 = torch.Tensor(norm.ppf(p)).cuda()
val2 = F.estimate_quantiles(data, num_quantiles=2**bits-1)
err = torch.abs(val1-val2).mean()
2022-11-06 21:05:25 +00:00
assert err < 0.035
def test_bench_dequantization():
a = torch.rand(1024, 1024, device='cuda').half()
code =F.create_fp8_map(True, 3, 0, 4).cuda()
qa, SA = F.quantize_blockwise(a, code=code)
print(qa.max())
max_theoretical_mu = 1024*1024*2/1024**3/672*1000*1000
#print(max_theoretical_mu)
torch.cuda.synchronize()
t0 = time.time()
for i in range(100):
qa, SA = F.quantize_blockwise(a)
torch.cuda.synchronize()
#print((time.time()-t0)/1e6)
def test_fp4_quant():
vals = list(product([0, 1], repeat=4))
code = {}
for bits in vals:
result = 0
bias = 3
sign, e1, e2, p1 = bits
idx = sign*8 + e1*4 + e2*2 + p1*1
sign = -1.0 if sign else 1.0
exp = e1*2 + e2*1
if exp == 0:
# sub-normal
if p1 == 0: result = 0
else: result = sign*0.0625
else:
# normal
exp = 2**(-exp + bias + 1)
frac = 1.5 if p1 else 1.0
result = sign*exp*frac
code[idx] = result
A1 = torch.randn(1024, 1024, device='cuda').half()
qa, SA = F.quantize_fp4(A1, blocksize=64)
A2 = F.dequantize_fp4(qa, SA)
err = (A1 - A2).abs().float()
relerr = (err/A1.abs().float()).mean()
2023-04-02 19:42:01 +00:00
idx = err > 1.0
err = err.mean()
2023-04-02 19:42:01 +00:00
2023-02-05 05:11:21 +00:00
assert err.item() < 0.1
assert relerr.item() < 0.28
2023-04-02 23:10:35 +00:00
@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
@pytest.mark.parametrize("quant_type", ['fp4', 'nf4'])
def test_4bit_compressed_stats(quant_type):
for blocksize in [128, 64]:
errs1 = []
errs2 = []
2023-04-02 23:10:35 +00:00
for i in range(10):
A1 = torch.randn(1024, 1024, device='cuda').half()
q2, SA2 = F.quantize_4bit(A1, blocksize=blocksize, quant_type=quant_type)
q3, SA3= F.quantize_4bit(A1, blocksize=blocksize, compress_statistics=True, quant_type=quant_type)
A2 = F.dequantize_4bit(q2, SA2, quant_type=quant_type)
A3 = F.dequantize_4bit(q3, SA3, quant_type=quant_type)
err = (A1 - A2).abs().float()
relerr = (err/(A1.abs().float()+1e-15)).mean()
err = err.mean()
errs1.append(err.item())
assert err.item() < 0.11
assert relerr.item() < 0.28
err = (A1 - A3).abs().float()
relerr = (err/(A1.abs().float()+1e-15)).mean()
err = err.mean()
errs2.append(err.item())
assert err.item() < 0.11
assert relerr.item() < 0.28
#print(sum(errs1)/len(errs1), blocksize, quant_type)
#print(sum(errs2)/len(errs2), blocksize, quant_type)
2023-04-02 23:10:35 +00:00
@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
@pytest.mark.parametrize("quant_type", ['fp4', 'nf4'])
def test_bench_4bit_dequant(quant_type):
blocksize = 256
a = torch.rand(1024*12*4, 1024*12, device='cuda').half()
qa, SA = F.quantize_4bit(a, blocksize=blocksize, quant_type=quant_type)
input_size = a.numel()/2
output_size = a.numel()*2
num_bytes = input_size+output_size
GB = num_bytes/1e9
max_theoretical_s = GB/768
2023-02-05 06:00:04 +00:00
#print(max_theoretical_s*1e6)
b = torch.randn(128, 1024*12, device='cuda').half()
iters = 5
torch.cuda.synchronize()
t0 = time.time()
for i in range(iters):
F.dequantize_4bit(qa, SA, blocksize=blocksize, quant_type=quant_type)
#b.copy_(a)
torch.cuda.synchronize()
2023-02-05 06:00:04 +00:00
#print((time.time()-t0)/iters*1e6)
#torch.cuda.synchronize()
#t0 = time.time()
#for i in range(iters):
# torch.matmul(b, a.t())
#torch.cuda.synchronize()
#print((time.time()-t0)/iters*1e6)
2023-04-02 21:42:45 +00:00
def test_normal_map_tree():
code = F.create_normal_map()
values =code[:8].tolist() + code[-8:].tolist()
num_pivots = 1
2023-04-02 23:10:35 +00:00
print(values)
2023-04-02 21:42:45 +00:00
while num_pivots <16:
idx = list(range(16//num_pivots//2, 16, 16//num_pivots))
print(idx)
num_pivots *= 2
pivots = []
for i in idx:
pivots.append((values[i-1]+values[i])/2)
print(pivots)
2023-04-27 00:12:34 +00:00
2023-04-30 04:52:47 +00:00
#@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16'])
@pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16'])
2023-04-29 01:26:52 +00:00
def test_cutlass3_gemm(dtype):
2023-05-02 23:15:38 +00:00
debug = True
#for dim in [32, 64, 128, 256, 512, 1024, 2048, 4096]:
2023-05-02 15:58:59 +00:00
#for dim in [4096, 5120, 6656, 8192]:
2023-05-02 23:15:38 +00:00
for dim in [4096]:
#for dim in [128+1]:
2023-05-02 14:50:32 +00:00
errs = []
relerrs = []
max_err = 0
max_relerr = 0
for i in range(100):
2023-05-02 23:15:38 +00:00
A = torch.randn(1, dim, dtype=dtype, device='cuda')
2023-05-02 15:58:59 +00:00
B = torch.randn(4*dim, dim+0, dtype=dtype, device='cuda')/math.sqrt(dim)
2023-05-02 23:15:38 +00:00
#B = torch.randn(1, dim, dtype=dtype, device='cuda')/math.sqrt(dim)
2023-05-02 14:50:32 +00:00
#print('')
#print(A)
#print(B.t())
2023-05-02 19:10:32 +00:00
#A[:, :-1] = 0
#B[:, :-1] = 0
2023-05-02 14:50:32 +00:00
C1 = torch.matmul(A, B.t())
C2 = F.cutlass3_gemm(A, B.t())
# tensor cores are non-deterministic
# so we need to analyze errors around the mean
# to test our implementation
err = torch.abs(C1-C2)
mag = torch.abs(C1)+1e-8
relerr = err/mag
max_err = max(err.max(), max_err)
max_relerr = max(relerr.max(), max_relerr)
err = err.mean().item()
relerr = relerr.mean().item()
errs.append(err)
relerrs.append(relerr)
2023-05-02 23:15:38 +00:00
#if not debug and err/torch.abs(C1).mean() > 5e-5 or err > 3.2e-5:
2023-05-02 14:50:32 +00:00
# print('')
2023-05-02 19:10:32 +00:00
# print(i, err, relerr)
2023-05-02 14:50:32 +00:00
# print(A.flatten()[-6:])
# print(B.flatten()[-6:])
# out = A.flatten()[-6:]*B.flatten()[-6:]
# print(out)
# print(out[:-1].sum())
# print('='*80)
# print(C1.flatten()[-6:])
# print(C2.flatten()[-6:])
# #assert False, 'ERROR'
2023-05-02 15:58:59 +00:00
c = int(C1.numel()*0.0014*(dim/256))+1
2023-05-02 14:53:29 +00:00
2023-05-02 23:15:38 +00:00
c = assert_all_approx_close(C1, C2, 1e-5, 0.01, count=c, throw=not debug)
2023-05-02 15:58:59 +00:00
#print(c/math.sqrt(dim))
2023-05-02 14:50:32 +00:00
print('')
print(dim, sum(errs)/len(errs)/math.sqrt(dim))
print(dim, sum(relerrs)/len(relerrs)/math.sqrt(dim))
print(dim, (max_err.item(), max_relerr.item()))
2023-04-27 00:12:34 +00:00
2023-04-30 04:52:47 +00:00
#@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16'])
@pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16'])
def test_gemm_4bit(dtype):
2023-05-02 23:15:38 +00:00
#for dim in [32, 64, 128, 256, 512, 1024, 2048, 4096]:
#for dim in [4096, 5120, 6656, 8192]:
#for dim in [32]:
for dim in [4096]:
errs = []
relerrs = []
max_err = 0
max_relerr = 0
for i in range(1):
#A = torch.rand(2, 4092, dtype=dtype, device='cuda')
#B = torch.rand(4*4092, 4092, dtype=dtype, device='cuda')
#A = torch.rand(1, 4096, dtype=dtype, device='cuda')
#B = torch.rand(4*4096, 4096, dtype=dtype, device='cuda')
A = torch.randn(1, dim+0, dtype=dtype, device='cuda')
B = torch.randn(4*dim, dim+0, dtype=dtype, device='cuda')/math.sqrt(dim)
#print('')
#print(A)
#print(B.t())
#A[:, :-1] = 0
#B[:, :-1] = 0
2023-04-30 04:52:47 +00:00
2023-05-02 23:15:38 +00:00
qB, state = F.quantize_nf4(B)
F.dequantize_nf4(qB, state)
2023-04-30 04:52:47 +00:00
2023-05-02 23:15:38 +00:00
C3 = torch.matmul(A, B.t())
C2 = F.cutlass3_gemm(A, qB.t(), state=state)
C1 = bnb.matmul_4bit(A, qB.t(), state)
C2 = F.cutlass3_gemm(A, qB.t(), state=state)
2023-04-30 04:52:47 +00:00
2023-05-02 23:15:38 +00:00
print(C1.shape, C2.shape)
2023-04-30 04:52:47 +00:00
2023-05-02 23:15:38 +00:00
# tensor cores are non-deterministic
# so we need to analyze errors around the mean
# to test our implementation
err = torch.abs(C1-C2)
mag = torch.abs(C1)+1e-8
relerr = err/mag
max_err = max(err.max(), max_err)
max_relerr = max(relerr.max(), max_relerr)
err = err.mean().item()
relerr = relerr.mean().item()
errs.append(err)
relerrs.append(relerr)
if err/torch.abs(C1).mean() > 5e-5 or err > 3.2e-5:
print('')
print(i, err, relerr)
print(A.flatten()[-6:])
print(B.flatten()[-6:])
out = A.flatten()[-6:]*B.flatten()[-6:]
print(out)
print(out[:-1].sum())
print('='*80)
print(C1.flatten()[-6:])
print(C2.flatten()[-6:])
#assert False, 'ERROR'
2023-04-30 04:52:47 +00:00
2023-05-02 23:15:38 +00:00
c = int(C1.numel()*0.0014*(dim/256))+1
2023-04-30 04:52:47 +00:00
2023-05-02 23:15:38 +00:00
c = assert_all_approx_close(C1, C2, 1e-5, 0.01, count=c, throw=False)
#print(c/math.sqrt(dim))
print('')
print(dim, sum(errs)/len(errs)/math.sqrt(dim))
print(dim, sum(relerrs)/len(relerrs)/math.sqrt(dim))
print(dim, (max_err.item(), max_relerr.item()))
2023-04-27 00:12:34 +00:00
@pytest.mark.skip("Row scale has some bugs for ampere")
2023-05-06 18:14:06 +00:00
def test_managed():
n = 32*10
A = F.get_paged(n, n, dtype=torch.float32)
B = F.get_paged(n, n, dtype=torch.uint8)
B2 = F.get_paged(n, n, dtype=torch.float32)
assert A.is_paged
assert B.is_paged
assert A.page_deviceid==0
assert B.page_deviceid==0
F.fill(A, 17.0)
F.fill(B, 17)
F.fill(B2, 2)
assert (A==17).sum().item() == n*n
assert (B==17).sum().item() == n*n
C = A*B.float()
assert (C==289).sum().item() == n*n
F._mul(A, B2)
F._mul(A, B2)
F._mul(A, B2)
assert (A==17*(2**3)).sum().item() == n*n
# F.prefetch_tensor(A)
# F.prefetch_tensor(B)
# F.fill(B2, 17.0)
# F._mul(A, B2)
# F.prefetch_tensor(A, to_cpu=True)
# F.prefetch_tensor(B, to_cpu=True)
# F.prefetch_tensor(B2, to_cpu=True)
# torch.cuda.synchronize()
# assert (A==17).sum().item() == n*n
# torch.testing.assert_close(A, torch.ones(A.shape)*289)