bitsandbytes-rocm/benchmarking/switchback/make_plot_with_jsonl.py

139 lines
5.1 KiB
Python
Raw Normal View History

2023-03-29 06:47:08 +00:00
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
import matplotlib.gridspec as gridspec
cmap=plt.get_cmap('cool')
if __name__ == '__main__':
fig = plt.figure(tight_layout=True, figsize=(12,3.5))
gs = gridspec.GridSpec(1, 2)
2023-04-01 18:46:04 +00:00
dims_to_consider = [1024, 1280, 1408, 1664, 2048, 4096]
batch_size_for_plot1 = 32768
batch_sizes_for_plot2 = [2**14, 2**15, 2**16, 2**17]
dims_to_xtick = [1024, 2048, 4096]
logscale_plot1 = True
2023-03-29 06:47:08 +00:00
ax = fig.add_subplot(gs[0, 0])
2023-04-01 23:50:12 +00:00
# TODO: change this to what you want.
2023-04-01 18:46:04 +00:00
rdf = pd.read_json('speed_benchmark/info_a100_py2.jsonl', lines=True)
df = rdf[rdf.batch_size == batch_size_for_plot1]
2023-03-29 06:47:08 +00:00
2023-04-01 18:46:04 +00:00
# first plot the time occupied by different operations
2023-03-29 06:47:08 +00:00
for k, marker, ls, color, name in [
('standard_gx+standard_gw+standard_fwd', 's', '-', 'C2', 'Standard fp16 (sum of parts)'),
('x_quantize_rowwise+g_quantize_rowwise+w_quantize_global+w_quantize_global_transpose+standard_gw+global_fwd+global_bwd', 'o', '-', 'C4', 'SwitchBack int8 (sum of parts)'),
('standard_fwd', '^', '--', 'C2', 'Matmul XW (standard)'),
('standard_gw', '^', '-.', 'C2', 'Matmul GW (standard)'),
('standard_gx', '^', ':', 'gray', 'Matmul GX (both)'),
('global_fwd', '^', '--', 'C4', 'Int8 Matmul XW (switchback)'),
('global_bwd', '^', '-.', 'C4', 'Int8 Matmul GW (switchback)'),
('x_quantize_rowwise', 'P', '--', 'C4', 'Quantize rowwise X (switchback)'),
('g_quantize_rowwise', 'P', '-.', 'C4', 'Quantize rowwise G (switchback)'),
('w_quantize_global', '.', '--', 'C4', 'Quatnize global W (switchback)'),
('w_quantize_global_transpose', '.', '-.', 'C4', 'Quantize gloabl and\ntranspose W (switchback)'),
]:
xs = []
ys = []
2023-04-01 18:46:04 +00:00
for embed_dim in dims_to_consider:
# average over dim -> 4*dim and 4*dim -> dim
2023-03-29 06:47:08 +00:00
df_ = df[df.dim_in == embed_dim]
df_ = df_[df_.dim_out == embed_dim * 4]
xs.append(embed_dim)
y_ = 0
for k_ in k.split('+'):
y_ += df_[k_].values[0]
df_ = df[df.dim_in == embed_dim * 4]
df_ = df_[df_.dim_out == embed_dim]
for k_ in k.split('+'):
y_ += df_[k_].values[0]
ys.append(y_ * 0.5)
ax.plot(xs, ys, color=color, label=name, marker=marker, markersize=5 if marker=='s' else 5, linestyle=ls, linewidth=2 if '+' in k else 1.)
ax.set_xlabel('dim', fontsize=13)
ax.set_ylabel('time (ms)', fontsize=13)
ax.grid()
ax.set_xscale('log')
2023-04-01 18:46:04 +00:00
if logscale_plot1:
ax.set_yscale('log')
2023-03-29 06:47:08 +00:00
ax.tick_params(axis='x', labelsize=11)
ax.tick_params(axis='y', labelsize=11)
2023-04-01 18:46:04 +00:00
ax.set_xticks(dims_to_xtick)
ax.set_xticklabels(dims_to_xtick)
2023-03-29 06:47:08 +00:00
ax.set_xticks([], minor=True)
leg = ax.legend(loc='upper center', bbox_to_anchor=(-0.64, 1.), ncol=1, fontsize=10)
leg.get_texts()[0].set_fontweight('bold')
leg.get_texts()[1].set_fontweight('bold')
plt.subplots_adjust(left=0.1)
ax.set_title(' Linear layer, batch * sequence length = 32k', fontsize=10, loc='left', y=1.05, pad=-20)
ax = fig.add_subplot(gs[0, 1])
# now plot the % speedup for different batch sizes
2023-04-01 18:46:04 +00:00
for j, batch_size in enumerate(batch_sizes_for_plot2):
2023-03-29 06:47:08 +00:00
all_xs, all_ys = [], []
for k, marker, ls, color, name in [
('standard_gx+standard_gw+standard_fwd', 's', '-', 'C2', 'Standard fp16 (total time)'),
('x_quantize_rowwise+g_quantize_rowwise+w_quantize_global+w_quantize_global_transpose+standard_gw+global_fwd+global_bwd', 'o', '-', 'C4', 'SwitchBack int8 (total time)'),
]:
xs, ys = [], []
df = rdf[rdf.batch_size == batch_size]
2023-04-01 18:46:04 +00:00
for embed_dim in dims_to_consider:
2023-03-29 06:47:08 +00:00
df_ = df[df.dim_in == embed_dim]
df_ = df_[df_.dim_out == embed_dim * 4]
xs.append(embed_dim)
y_ = 0
for k_ in k.split('+'):
y_ += df_[k_].values[0]
df_ = df[df.dim_in == embed_dim * 4]
df_ = df_[df_.dim_out == embed_dim]
for k_ in k.split('+'):
y_ += df_[k_].values[0]
ys.append(y_ * 0.5)
all_xs.append(xs)
all_ys.append(ys)
color = cmap(j * 0.25)
real_ys = [-((all_ys[1][i] - all_ys[0][i]) / all_ys[0][i]) * 100 for i in range(len(all_ys[0]))]
markers = ['^', 'v', 'P', 'o']
ax.plot(all_xs[0], real_ys, color=color, label=f'batch * sequence length = {batch_size}', marker=markers[j], markersize=5 if marker=='s' else 5)
ax.legend()
ax.set_xlabel('dim', fontsize=13)
ax.set_xscale('log')
ax.grid()
ax.set_ylabel(r'% speedup', fontsize=13)
ax.tick_params(axis='x', labelsize=11)
ax.tick_params(axis='y', labelsize=11)
2023-04-01 18:46:04 +00:00
ax.set_xticks(dims_to_xtick)
ax.set_xticklabels(dims_to_xtick)
2023-03-29 06:47:08 +00:00
ax.set_xticks([], minor=True)
ax.set_title(' Linear layer summary, varying dimensions', fontsize=10, loc='left', y=1.05, pad=-20)
2023-04-01 18:46:04 +00:00
plt.savefig('speed_benchmark/plot_with_info.pdf', bbox_inches='tight')
2023-03-29 06:47:08 +00:00