bitsandbytes-rocm/bitsandbytes/autograd/_functions.py

408 lines
14 KiB
Python
Raw Normal View History

import operator
2022-07-22 21:41:05 +00:00
import torch
import bitsandbytes.functional as F
from dataclasses import dataclass
from functools import reduce # Required in Python 3
# math.prod not compatible with python < 3.8
def prod(iterable):
return reduce(operator.mul, iterable, 1)
2022-07-22 21:41:05 +00:00
tensor = torch.Tensor
"""
2022-07-22 21:41:05 +00:00
This class pools outlier dimensions across layers.
This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
"""
2022-07-22 21:41:05 +00:00
class GlobalOutlierPooler(object):
_instance = None
def __init__(self):
raise RuntimeError("Call get_instance() instead")
2022-07-22 21:41:05 +00:00
def initialize(self):
self.outliers = set()
self.model_dim = None
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
def add_outliers(self, outlier_idx, feature_dim):
if self.model_dim is None:
self.model_dim = feature_dim
if feature_dim != self.model_dim:
return # we do not encode outliers for the 2nd FFN layer
2022-07-22 21:41:05 +00:00
self.outliers.update(outlier_idx.tolist())
def get_current_outlier_idx(self):
return torch.Tensor(list(self.outliers)).to(torch.int64)
class MatMul8bit(torch.autograd.Function):
2022-07-22 21:41:05 +00:00
@staticmethod
def forward(ctx, A, B, out=None, quant_type="vector", precision=[8, 8, 8]):
2022-07-22 21:41:05 +00:00
if precision[0] != 8:
with torch.no_grad():
output = torch.matmul(A, B)
else:
if len(B.shape) == 2:
dim = 0
else:
dim = 1
2022-07-22 21:41:05 +00:00
qA, SA = F.vectorwise_quant(A, dim=-1, quant_type=quant_type)
qB, SB = F.vectorwise_quant(B, dim=dim, quant_type=quant_type)
iout = F.igemm(qA, qB)
output = F.vectorwise_mm_dequant(iout, SA, SB, A.dtype, quant_type)
if A.requires_grad or B.requires_grad:
ctx.save_for_backward(A, B)
ctx.quant_type = quant_type
ctx.precision = precision
return output
@staticmethod
def backward(ctx, grad_output):
A, B = ctx.saved_tensors
quant_type = ctx.quant_type
precision = ctx.precision
grad_A = grad_B = None
if B.requires_grad:
if len(A.shape) == 3:
dims = [0, 1]
# bsi -> ibs
permute_dim = [0, 2, 1]
else:
dims = [0]
# bs -> sb
permute_dim = [1, 0]
if precision[1] != 8:
with torch.no_grad():
grad_B = torch.matmul(A.permute(permute_dim), grad_output)
else:
if len(B.shape) == 2 and len(A.shape) == 3:
grad_output = grad_output.contiguous()
if not grad_output.is_contiguous():
grad_output.contiguous()
qgrad_output, S1 = F.vectorwise_quant(
grad_output.view(-1, grad_output.shape[2]),
dim=0,
quant_type=quant_type,
)
if not A.is_contiguous():
A = A.contiguous()
qA, S2 = F.vectorwise_quant(
A.view(-1, A.shape[2]), dim=0, quant_type=quant_type
)
2022-07-22 21:41:05 +00:00
igrad_B = F.igemm(qA.t(), qgrad_output)
grad_B = F.vectorwise_mm_dequant(
igrad_B, S2.t(), S1, grad_output.dtype, quant_type
)
2022-07-22 21:41:05 +00:00
else:
qgrad_output, S1 = F.vectorwise_quant(
grad_output, dim=dims, quant_type=quant_type
)
qA, S2 = F.vectorwise_quant(
A, dim=dims, quant_type=quant_type
)
2022-07-22 21:41:05 +00:00
igrad_B = F.igemm(qA.permute(permute_dim), qgrad_output)
grad_B = F.vectorwise_mm_dequant(
igrad_B,
S2.permute(permute_dim),
S1,
grad_output.dtype,
quant_type,
)
2022-07-22 21:41:05 +00:00
if A.requires_grad:
if len(grad_output.shape) == 3:
dims = [2]
else:
dims = [1]
2022-07-22 21:41:05 +00:00
if len(B.shape) == 3:
# bio -> boi
permute_dim = [0, 2, 1]
dim_B = dims
else:
# io -> oi
permute_dim = [1, 0]
dim_B = [1]
if precision[2] != 8:
with torch.no_grad():
grad_A = torch.matmul(grad_output, B.permute(permute_dim))
else:
qgrad_output, S1 = F.vectorwise_quant(
grad_output, dim=dims, quant_type=quant_type
)
2022-07-22 21:41:05 +00:00
qB, S3 = F.vectorwise_quant(B, dim=dim_B, quant_type=quant_type)
igrad_A = F.igemm(qgrad_output, qB.permute(permute_dim))
grad_A = F.vectorwise_mm_dequant(
igrad_A,
S1,
S3.permute(permute_dim),
grad_output.dtype,
quant_type,
)
2022-07-22 21:41:05 +00:00
return grad_A, grad_B, None, None, None
mm_cublas = MatMul8bit.apply
bmm_cublas = MatMul8bit.apply
matmul_cublas = MatMul8bit.apply
2022-07-22 21:41:05 +00:00
@dataclass
class MatmulLtState:
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
2022-09-11 03:26:15 +00:00
memory_efficient_backward = False
2022-07-22 21:41:05 +00:00
use_pool = False
formatB = F.get_special_format_str()
def reset_grads(self):
self.CB = None
self.CxB = None
self.SB = None
self.SCB = None
self.CxBt = None
self.SBt = None
2022-09-11 03:26:15 +00:00
self.CBt = None
2022-07-22 21:41:05 +00:00
class MatMul8bitLt(torch.autograd.Function):
@staticmethod
2022-08-16 19:00:54 +00:00
def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()):
# default to pytorch behavior if inputs are empty
ctx.is_empty = False
if prod(A.shape) == 0:
ctx.is_empty = True
ctx.A = A
ctx.B = B
2022-08-16 19:00:54 +00:00
ctx.bias = bias
if A.shape[-1] == B.shape[0]:
return torch.empty(A.shape[:-1]+B.shape[1:], dtype=torch.float16, device=A.device)
else:
return torch.empty(A.shape[:-1]+B.shape[:1], dtype=torch.float16, device=A.device)
2022-07-22 21:41:05 +00:00
# 1. Quantize A
# 2. Quantize B
# 3. Matmul
# 4. Mixed-precision decomposition matmul
# 5. Save state
requires_gradA = A.requires_grad
requires_gradB = B.requires_grad
2022-08-16 19:00:54 +00:00
requires_gradBias = bias is not None and bias.requires_grad
2022-07-22 21:41:05 +00:00
formatB = state.formatB
input_shape = A.shape
if state.outlier_pool is None:
state.outlier_pool = GlobalOutlierPooler.get_instance()
# Cast A to fp16
A_dtype = A.dtype
A = A.to(torch.float16)
2022-07-22 21:41:05 +00:00
# 1. Quantize A
if len(A.shape) == 3:
A = A.view(-1, A.shape[-1]).contiguous()
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(
A, threshold=state.threshold
)
2022-07-22 21:41:05 +00:00
if state.threshold > 0.0 and coo_tensorA is not None:
if state.has_fp16_weights:
idx = torch.unique(coo_tensorA.colidx).long()
CA[:, idx] = 0
CAt[:, idx] = 0
subA = A[:, idx]
state.subB = B[:, idx].t().contiguous()
state.idx = idx
2022-08-23 20:51:00 +00:00
else:
if state.CxB is None:
# B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
# we also need to convert it to the turing/ampere format
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
2022-07-22 21:41:05 +00:00
else:
if not state.has_fp16_weights and state.CxB is None:
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
subA = None
# 2. Quantize B
if state.has_fp16_weights:
has_grad = True if (getattr(B, "grad", None) is not None) else False
2022-07-22 21:41:05 +00:00
is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1)
if is_transposed:
B = B.contiguous()
2022-07-22 21:41:05 +00:00
if (state.is_training and not has_grad) or state.CxB is None:
state.reset_grads()
(
CB,
state.CBt,
state.SCB,
state.SCBt,
coo_tensorB,
) = F.double_quant(B)
2022-07-22 21:41:05 +00:00
state.CxB, state.SB = F.transform(CB, to_order=formatB)
else:
has_grad = False
if coo_tensorA is not None and not state.has_fp16_weights:
# extract outliers
outlier_idx = torch.unique(coo_tensorA.colidx)
2022-07-27 08:46:35 +00:00
state.idx = outlier_idx
2022-09-11 02:51:29 +00:00
# state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
# if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
# # do not use pool for 2nd FFN layer
# state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
# else:
# state.idx = outlier_idx
2022-07-27 08:46:35 +00:00
outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
state.subB = (
(outliers * state.SCB.view(-1, 1) / 127.0)
.t()
.contiguous()
.half()
)
CA[:, state.idx.long()] = 0
CAt[:, state.idx.long()] = 0
subA = A[:, state.idx.long()]
2022-07-22 21:41:05 +00:00
shapeB = state.SB[0]
if len(input_shape) == 3:
output_shape = (input_shape[0], input_shape[1], shapeB[0])
else:
output_shape = (input_shape[0], shapeB[0])
# 3. Matmul
C32A, SA = F.transform(CA, "col32")
2022-07-22 21:41:05 +00:00
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
2022-08-16 19:00:54 +00:00
# we apply the fused bias here
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
2022-07-22 21:41:05 +00:00
# 4. Mixed-precision decomposition matmul
2022-07-27 08:46:35 +00:00
if coo_tensorA is not None and subA is not None:
2022-07-22 21:41:05 +00:00
output += torch.matmul(subA, state.subB)
# 5. Save state
ctx.state = state
ctx.formatB = formatB
ctx.grad_shape = input_shape
2022-08-16 19:00:54 +00:00
ctx.req_grads = [requires_gradA, requires_gradB, requires_gradBias]
2022-07-22 21:41:05 +00:00
if requires_gradA or requires_gradB:
ctx.tensors = (CAt, subA)
ctx.tensor_states = (SCAt, state.idx)
else:
ctx.tensors = [None, None]
ctx.tensor_states = (None, None)
ctx.save_for_backward(None, None)
2022-08-26 01:11:40 +00:00
# Cast fp16 output back to A.dtype
output = output.to(A_dtype)
2022-08-16 19:00:54 +00:00
clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
2022-07-22 21:41:05 +00:00
return clone_func(output.view(output_shape))
2022-09-11 02:51:29 +00:00
@staticmethod
2022-07-22 21:41:05 +00:00
def backward(ctx, grad_output):
if ctx.is_empty:
2022-08-16 19:00:54 +00:00
bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias))
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
req_gradA, req_gradB, req_gradBias = ctx.req_grads
2022-09-11 02:51:29 +00:00
CAt, subA = ctx.tensors
SCAt, idx = ctx.tensor_states
formatB = ctx.formatB
2022-07-22 21:41:05 +00:00
state = ctx.state
# Cast grad_output to fp16
grad_output_dtype = grad_output.dtype
grad_output = grad_output.to(torch.float16)
2022-07-22 21:41:05 +00:00
if len(grad_output.shape) == 3:
2022-08-23 20:39:54 +00:00
grad_output = grad_output.reshape(
-1, grad_output.shape[-1]
).contiguous()
2022-07-22 21:41:05 +00:00
2022-08-16 19:00:54 +00:00
grad_A = grad_B = grad_bias = None
2022-07-22 21:41:05 +00:00
2022-09-11 02:51:29 +00:00
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output)
if req_gradB:
CxAt, SAt = F.transform(CAt, formatB, transpose=True)
C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True)
gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt)
grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt)
if state.threshold > 0.0 and subA is not None:
grad_B[:, idx] += torch.matmul(grad_output.t(), subA)
2022-07-22 21:41:05 +00:00
if req_gradA:
2022-09-11 03:18:44 +00:00
if state.CBt is not None:
2022-09-11 02:51:29 +00:00
C32grad, Sgrad = F.transform(Cgrad, "col32")
if state.CxBt is None:
state.CxBt, state.SBt = F.transform(
state.CBt, to_order=formatB, transpose=True
)
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape)
2022-09-11 03:18:44 +00:00
elif state.CB is not None:
2022-09-11 02:51:29 +00:00
CB = state.CB.half()
SCB = (state.SCB.unsqueeze(1) / 127.0).half()
CB *= SCB
grad_A = torch.mm(grad_output, CB).view(ctx.grad_shape)
else:
2022-09-11 03:18:44 +00:00
raise Exception('State must contain either CBt or CB matrix for backward')
2022-08-16 19:00:54 +00:00
if req_gradBias:
grad_bias = grad_output.sum(0)
2022-07-22 21:41:05 +00:00
2022-08-26 01:11:40 +00:00
# Cast grad_A back to grad_output_dtype
grad_output.to(grad_output_dtype)
2022-08-16 19:00:54 +00:00
return grad_A, grad_B, None, grad_bias, None
2022-07-22 21:41:05 +00:00
def matmul(
A: tensor,
B: tensor,
out: tensor = None,
state: MatmulLtState = None,
threshold=0.0,
2022-08-16 19:00:54 +00:00
bias=None
):
2022-07-22 21:41:05 +00:00
state = state or MatmulLtState()
if threshold > 0.0:
state.threshold = threshold
2022-08-16 19:00:54 +00:00
return MatMul8bitLt.apply(A, B, out, bias, state)