2023-03-29 06:47:08 +00:00
|
|
|
import torch
|
|
|
|
|
|
|
|
import triton
|
|
|
|
import triton.language as tl
|
|
|
|
from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time
|
|
|
|
|
|
|
|
|
2023-04-01 18:46:04 +00:00
|
|
|
# This is a matmul kernel based on triton.ops.matmul
|
|
|
|
# It is modified to support rowwise quantized input and global quantized weight
|
|
|
|
# It's purpose is fused matmul then dequantize
|
|
|
|
# It does support bias.
|
|
|
|
|
2023-03-29 06:47:08 +00:00
|
|
|
def init_to_zero(name):
|
|
|
|
return lambda nargs: nargs[name].zero_()
|
|
|
|
|
|
|
|
def get_configs_io_bound():
|
|
|
|
configs = []
|
|
|
|
for num_stages in [2, 3, 4, 5, 6]:
|
|
|
|
for block_m in [16, 32]:
|
|
|
|
for block_k in [32, 64]:
|
|
|
|
for block_n in [32, 64, 128, 256]:
|
|
|
|
num_warps = 2 if block_n <= 64 else 4
|
|
|
|
configs.append(
|
|
|
|
triton.Config({'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k, 'SPLIT_K': 1},
|
|
|
|
num_stages=num_stages, num_warps=num_warps))
|
|
|
|
# split_k
|
|
|
|
for split_k in [2, 4, 8, 16]:
|
|
|
|
configs.append(triton.Config({'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k, 'SPLIT_K': split_k},
|
|
|
|
num_stages=num_stages, num_warps=num_warps, pre_hook=init_to_zero('C')))
|
|
|
|
return configs
|
|
|
|
|
|
|
|
|
|
|
|
@triton.autotune(
|
|
|
|
configs=[
|
|
|
|
# basic configs for compute-bound matmuls
|
|
|
|
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 256, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=3, num_warps=8),
|
|
|
|
triton.Config({'BLOCK_M': 256, 'BLOCK_N': 128, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=3, num_warps=8),
|
|
|
|
triton.Config({'BLOCK_M': 256, 'BLOCK_N': 64, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 64, 'BLOCK_N': 256, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 64, 'BLOCK_N': 128, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 64, 'BLOCK_N': 32, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=5, num_warps=2),
|
|
|
|
# good for int8
|
|
|
|
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 256, 'BLOCK_K': 128, 'SPLIT_K': 1}, num_stages=3, num_warps=8),
|
|
|
|
triton.Config({'BLOCK_M': 256, 'BLOCK_N': 128, 'BLOCK_K': 128, 'SPLIT_K': 1}, num_stages=3, num_warps=8),
|
|
|
|
triton.Config({'BLOCK_M': 256, 'BLOCK_N': 64, 'BLOCK_K': 128, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 64, 'BLOCK_N': 256, 'BLOCK_K': 128, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'BLOCK_K': 128, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 64, 'BLOCK_N': 128, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=4, num_warps=4),
|
|
|
|
triton.Config({'BLOCK_M': 64, 'BLOCK_N': 32, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=5, num_warps=2),
|
|
|
|
] + get_configs_io_bound(),
|
|
|
|
key=['M', 'N', 'K'],
|
|
|
|
prune_configs_by={
|
|
|
|
'early_config_prune': early_config_prune,
|
|
|
|
'perf_model': estimate_matmul_time,
|
|
|
|
'top_k': 10
|
|
|
|
},
|
|
|
|
)
|
|
|
|
@triton.heuristics({
|
|
|
|
'EVEN_K': lambda args: args['K'] % (args['BLOCK_K'] * args['SPLIT_K']) == 0,
|
|
|
|
})
|
|
|
|
@triton.jit
|
2023-04-01 18:46:04 +00:00
|
|
|
def _int8_matmul_mixed_dequantize(A, B, C, bias, state_x_ptr, state_w_ptr, M, N, K, divfactor: tl.constexpr, has_bias : tl.constexpr,
|
2023-03-29 06:47:08 +00:00
|
|
|
stride_am, stride_ak,
|
|
|
|
stride_bk, stride_bn,
|
|
|
|
stride_cm, stride_cn,
|
|
|
|
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
|
|
|
|
GROUP_M: tl.constexpr, SPLIT_K: tl.constexpr, EVEN_K: tl.constexpr,
|
|
|
|
ACC_TYPE: tl.constexpr
|
|
|
|
):
|
|
|
|
# matrix multiplication
|
|
|
|
pid = tl.program_id(0)
|
|
|
|
pid_z = tl.program_id(1)
|
|
|
|
grid_m = tl.cdiv(M, BLOCK_M)
|
|
|
|
grid_n = tl.cdiv(N, BLOCK_N)
|
|
|
|
# re-order program ID for better L2 performance
|
|
|
|
width = GROUP_M * grid_n
|
|
|
|
group_id = pid // width
|
|
|
|
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
|
|
|
|
pid_m = group_id * GROUP_M + (pid % group_size)
|
|
|
|
pid_n = (pid % width) // (group_size)
|
|
|
|
# do matrix multiplication
|
|
|
|
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
|
|
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
|
|
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
|
|
|
|
rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
|
|
|
|
rk = pid_z * BLOCK_K + tl.arange(0, BLOCK_K)
|
|
|
|
# pointers
|
|
|
|
A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
|
|
|
|
B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
|
|
|
|
|
|
|
|
# rematerialize rm and rn to save registers
|
|
|
|
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
|
|
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
|
|
|
|
|
|
w_factor = tl.load(state_w_ptr)
|
|
|
|
x_factor = tl.load(state_x_ptr + ram)[:, None]
|
|
|
|
|
|
|
|
# acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
|
|
|
|
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.int32)
|
|
|
|
for k in range(0, tl.cdiv(K, BLOCK_K * SPLIT_K)):
|
|
|
|
if EVEN_K:
|
|
|
|
a = tl.load(A)
|
|
|
|
b = tl.load(B)
|
|
|
|
else:
|
|
|
|
k_remaining = K - k * (BLOCK_K * SPLIT_K)
|
|
|
|
a = tl.load(A, mask=rk[None, :] < k_remaining, other=0.)
|
|
|
|
b = tl.load(B, mask=rk[:, None] < k_remaining, other=0.)
|
|
|
|
acc += tl.dot(a, b)
|
|
|
|
A += BLOCK_K * SPLIT_K * stride_ak
|
|
|
|
B += BLOCK_K * SPLIT_K * stride_bk
|
|
|
|
|
|
|
|
acc = (w_factor * (x_factor * (acc * divfactor)))
|
|
|
|
acc = acc.to(C.dtype.element_ty)
|
|
|
|
|
2023-04-01 18:46:04 +00:00
|
|
|
# conditionally add bias
|
2023-03-29 06:47:08 +00:00
|
|
|
if has_bias:
|
|
|
|
bias = tl.load(bias + rn).to(C.dtype.element_ty)
|
|
|
|
acc = acc + bias[None, :]
|
|
|
|
|
|
|
|
C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn)
|
|
|
|
mask = (rm < M)[:, None] & (rn < N)[None, :]
|
|
|
|
# handles write-back with reduction-splitting
|
|
|
|
if SPLIT_K == 1:
|
|
|
|
tl.store(C, acc, mask=mask)
|
|
|
|
else:
|
|
|
|
tl.atomic_add(C, acc, mask=mask)
|
|
|
|
|
|
|
|
|
2023-04-01 18:46:04 +00:00
|
|
|
def int8_matmul_mixed_dequanitze(a, b, state_x, state_w, bias):
|
2023-03-29 06:47:08 +00:00
|
|
|
device = a.device
|
|
|
|
divfactor = 1. / (127. * 127.)
|
|
|
|
has_bias = 0 if bias is None else 1
|
|
|
|
# handle non-contiguous inputs if necessary
|
|
|
|
if a.stride(0) > 1 and a.stride(1) > 1:
|
|
|
|
a = a.contiguous()
|
|
|
|
if b.stride(0) > 1 and b.stride(1) > 1:
|
|
|
|
b = b.contiguous()
|
|
|
|
# checks constraints
|
|
|
|
assert a.shape[1] == b.shape[0], "incompatible dimensions"
|
|
|
|
M, K = a.shape
|
|
|
|
_, N = b.shape
|
|
|
|
# allocates output
|
|
|
|
c = torch.empty((M, N), device=device, dtype=torch.float16)
|
|
|
|
# accumulator types
|
|
|
|
ACC_TYPE = tl.float32 #if a.dtype in [torch.float16, torch.bfloat16, torch.float32] else tl.int32
|
2023-04-01 18:46:04 +00:00
|
|
|
# launch int8_matmul_mixed_dequantize kernel
|
2023-03-29 06:47:08 +00:00
|
|
|
grid = lambda META: (triton.cdiv(M, META['BLOCK_M']) * triton.cdiv(N, META['BLOCK_N']), META['SPLIT_K'])
|
2023-04-01 18:46:04 +00:00
|
|
|
_int8_matmul_mixed_dequantize[grid](a, b, c, bias, state_x, state_w, M, N, K, divfactor, has_bias,
|
2023-03-29 06:47:08 +00:00
|
|
|
a.stride(0), a.stride(1),
|
|
|
|
b.stride(0), b.stride(1),
|
|
|
|
c.stride(0), c.stride(1),
|
|
|
|
GROUP_M=8, ACC_TYPE=ACC_TYPE)
|
|
|
|
return c
|