bitsandbytes-rocm/tests/test_linear8bitlt.py

144 lines
5.3 KiB
Python
Raw Normal View History

import os
from contextlib import nullcontext
from itertools import product
from tempfile import TemporaryDirectory
import pytest
import torch
import bitsandbytes as bnb
from bitsandbytes import functional as F
from bitsandbytes.autograd import get_inverse_transform_indices, undo_layout
from bitsandbytes.nn.modules import Linear8bitLt
# contributed by Alex Borzunov, see:
# https://github.com/bigscience-workshop/petals/blob/main/tests/test_linear8bitlt.py
@pytest.mark.skipif(
not torch.cuda.is_available() or torch.cuda.get_device_capability() < (7, 5),
reason="this test requires a turing-generation or newer GPU, see bitsandbytes docs",
)
def test_layout_exact_match():
x = (torch.randn(14336 * 3, 14336) * 10).to(torch.int8).cuda()
for tile_size, order in ((8, 32), "col_turing"), ((32, 32), "col_ampere"):
transform = lambda x: F.transform(x.cuda(), from_order="row", to_order=order)[0].to(x.device)
tile_indices = get_inverse_transform_indices(transform, tile_size)
cxb = transform(x)
torch.cuda.synchronize()
restored_x = undo_layout(cxb, tile_indices)
torch.cuda.synchronize()
assert restored_x.is_contiguous()
assert torch.all(torch.eq(restored_x, x))
@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
def test_linear_no_igemmlt():
linear = torch.nn.Linear(1024, 3072)
x = torch.randn(3, 1024, dtype=torch.half)
linear_custom = Linear8bitLt(
linear.in_features,
linear.out_features,
linear.bias is not None,
has_fp16_weights=False,
threshold=6.0,
)
linear_custom.state.force_no_igemmlt = True
linear_custom.weight = bnb.nn.Int8Params(
linear.weight.data.clone(), requires_grad=False, has_fp16_weights=False
).to(linear.weight.dtype)
linear_custom.bias = linear.bias
linear_custom = linear_custom.cuda()
linear = linear.half().cuda()
x_ref = x.clone().cuda().requires_grad_(True)
x_ours = x.clone().cuda().requires_grad_(True)
fx_ref = linear(x_ref).float()
grad_proj = torch.randn_like(fx_ref)
(fx_ref * grad_proj).mean().backward()
fx_ours = linear_custom(x_ours).float()
(fx_ours * grad_proj).mean().backward()
assert torch.allclose(fx_ref, fx_ours, atol=0.02)
assert torch.allclose(x_ref.grad, x_ours.grad, atol=0.01)
assert not linear_custom.state.has_fp16_weights
assert linear_custom.state.CB is not None
assert linear_custom.state.CxB is None
@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
2023-03-21 23:28:49 +00:00
@pytest.mark.parametrize("has_fp16_weights, serialize_before_forward, deserialize_before_cuda, force_no_igemmlt",
list(product([False, True], [False, True], [False, True], [False, True])))
def test_linear_serialization(has_fp16_weights, serialize_before_forward, deserialize_before_cuda, force_no_igemmlt):
linear = torch.nn.Linear(32, 96)
x = torch.randn(3, 32, dtype=torch.half)
linear_custom = Linear8bitLt(
linear.in_features,
linear.out_features,
linear.bias is not None,
has_fp16_weights=has_fp16_weights,
threshold=6.0,
)
2023-03-21 23:28:49 +00:00
if force_no_igemmlt:
linear_custom.state.force_no_igemmlt = True
linear_custom.weight = bnb.nn.Int8Params(
linear.weight.data.clone(), requires_grad=has_fp16_weights, has_fp16_weights=has_fp16_weights
)
linear_custom.bias = linear.bias
linear_custom = linear_custom.cuda()
if serialize_before_forward:
state_dict_8bit = linear_custom.state_dict()
x_first = x.clone().cuda().requires_grad_(True)
fx_first = linear_custom(x_first).float()
grad_proj = torch.randn_like(fx_first)
(fx_first * grad_proj).mean().backward()
if not serialize_before_forward:
state_dict_8bit = linear_custom.state_dict()
with TemporaryDirectory() as tmpdir:
state_path_8bit = os.path.join(tmpdir, "state_8bit.pth")
state_path = os.path.join(tmpdir, "state.pth")
torch.save(linear.state_dict(), state_path)
torch.save(state_dict_8bit, state_path_8bit)
if not has_fp16_weights:
assert os.path.getsize(state_path_8bit) < 0.5 * os.path.getsize(state_path)
new_state_dict = torch.load(state_path_8bit)
new_linear_custom = Linear8bitLt(
linear.in_features,
linear.out_features,
linear.bias is not None,
has_fp16_weights=has_fp16_weights,
threshold=6.0,
)
2023-03-21 23:28:49 +00:00
if force_no_igemmlt:
new_linear_custom.state.force_no_igemmlt = True
if deserialize_before_cuda:
with nullcontext() if has_fp16_weights else pytest.raises(RuntimeError):
new_linear_custom.load_state_dict(new_state_dict, strict=True)
new_linear_custom = new_linear_custom.cuda()
if not deserialize_before_cuda:
new_linear_custom.load_state_dict(new_state_dict, strict=True)
x_second = x.clone().cuda().requires_grad_(True)
fx_second = new_linear_custom(x_second).float()
(fx_second * grad_proj).mean().backward()
# if 8-bit weights were loaded before .cuda, state is incorrect anyway and RuntimeError was raised
if has_fp16_weights or not deserialize_before_cuda:
assert torch.allclose(fx_first, fx_second, atol=1e-5)
assert torch.allclose(x_first.grad, x_second.grad, atol=1e-5)