bitsandbytes-rocm/tests/test_generation.py

101 lines
2.9 KiB
Python
Raw Normal View History

2023-07-10 19:19:16 +00:00
import pytest
import torch
import math
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
GenerationConfig,
set_seed,
)
import transformers
def get_4bit_config():
return BitsAndBytesConfig(
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4',
)
def get_model(model_name_or_path='huggyllama/llama-7b', bnb_config=get_4bit_config()):
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
quantization_config=bnb_config,
max_memory={0:'48GB'},
device_map='auto'
).eval()
return model
def get_prompt_for_generation_eval(text, add_roles=True):
description = (
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
)
if add_roles:
prompt = f'{description} ### Human: {text} ### Assistant:'
else:
prompt = f'{description} {text}'
return prompt
def generate(model, tokenizer, text, generation_config, prompt_func=get_prompt_for_generation_eval):
text = prompt_func(text)
inputs = tokenizer(text, return_tensors="pt").to('cuda:0')
outputs = model.generate(inputs=inputs['input_ids'], generation_config=generation_config)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
name_or_path = 'huggyllama/llama-7b'
#name_or_path = 'AI-Sweden/gpt-sw3-126m'
@pytest.fixture(scope='session')
def model():
bnb_config = get_4bit_config()
bnb_config.bnb_4bit_compute_dtype=torch.float32
bnb_config.load_in_4bit=True
model = get_model(name_or_path)
print('')
return model
@pytest.fixture(scope='session')
def tokenizer():
tokenizer = transformers.AutoTokenizer.from_pretrained(name_or_path)
return tokenizer
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=['fp16', 'bf16', 'fp32'])
def test_pi(model, tokenizer, dtype):
generation_config = transformers.GenerationConfig(
max_new_tokens=128,
do_sample=True,
top_p=0.9,
temperature=0.7,
)
generation_config.max_new_tokens = 50
#text = 'Please write down the first 50 digits of pi.'
#text = get_prompt_for_generation_eval(text)
#text += ' Sure, here the first 50 digits of pi: 3.14159'
text = '3.14159'
model.config.quantization_config.bnb_4bit_compute_dtype = dtype
inputs = tokenizer(text, return_tensors="pt").to('cuda:0')
outputs = model.generate(inputs=inputs['input_ids'], generation_config=generation_config)
textout = tokenizer.decode(outputs[0], skip_special_tokens=True)
print('')
print(textout)
print(math.pi)
assert textout[:len(str(math.pi))] == str(math.pi)