Merge branch 'cuda-bin-switch-and-cli' of github.com:TimDettmers/bitsandbytes into cuda-bin-switch-and-cli
This commit is contained in:
commit
111b876449
|
@ -1,10 +1,15 @@
|
|||
from dataclasses import dataclass
|
||||
|
||||
import operator
|
||||
import torch
|
||||
import math
|
||||
import bitsandbytes as bnb
|
||||
import bitsandbytes.functional as F
|
||||
|
||||
from dataclasses import dataclass
|
||||
from functools import reduce # Required in Python 3
|
||||
|
||||
# math.prod not compatible with python < 3.8
|
||||
def prod(iterable):
|
||||
return reduce(operator.mul, iterable, 1)
|
||||
|
||||
tensor = torch.Tensor
|
||||
|
||||
"""
|
||||
|
@ -12,8 +17,6 @@ tensor = torch.Tensor
|
|||
This is particularly important for small models where outlier features
|
||||
are less systematic and occur with low frequency.
|
||||
"""
|
||||
|
||||
|
||||
class GlobalOutlierPooler(object):
|
||||
_instance = None
|
||||
|
||||
|
@ -201,7 +204,7 @@ class MatMul8bitLt(torch.autograd.Function):
|
|||
def forward(ctx, A, B, out=None, state=MatmulLtState()):
|
||||
# default to pytorch behavior if inputs are empty
|
||||
ctx.is_empty = False
|
||||
if math.prod(A.shape) == 0:
|
||||
if prod(A.shape) == 0:
|
||||
ctx.is_empty = True
|
||||
ctx.A = A
|
||||
ctx.B = B
|
||||
|
|
|
@ -45,6 +45,9 @@ def get_cuda_version(cuda, cudart_path):
|
|||
major = version//1000
|
||||
minor = (version-(major*1000))//10
|
||||
|
||||
if major < 11:
|
||||
print('CUDA SETUP: CUDA version lower than 11 are currenlty not supported!')
|
||||
|
||||
return f'{major}{minor}'
|
||||
|
||||
|
||||
|
@ -110,6 +113,10 @@ def get_compute_capability(cuda):
|
|||
|
||||
|
||||
def evaluate_cuda_setup():
|
||||
print('')
|
||||
print('='*35 + 'BUG REPORT' + '='*35)
|
||||
print('Welcome to bitsandbytes. For bug reports, please use this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
|
||||
print('='*80)
|
||||
binary_name = "libbitsandbytes_cpu.so"
|
||||
cudart_path = determine_cuda_runtime_lib_path()
|
||||
if cudart_path is None:
|
||||
|
@ -121,6 +128,7 @@ def evaluate_cuda_setup():
|
|||
print(f"CUDA SETUP: CUDA path found: {cudart_path}")
|
||||
cuda = get_cuda_lib_handle()
|
||||
cc = get_compute_capability(cuda)
|
||||
print(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
|
||||
cuda_version_string = get_cuda_version(cuda, cudart_path)
|
||||
|
||||
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
import ctypes as ct
|
||||
import operator
|
||||
import random
|
||||
import math
|
||||
import torch
|
||||
|
@ -11,6 +12,11 @@ from typing import Tuple
|
|||
from torch import Tensor
|
||||
|
||||
from .cextension import COMPILED_WITH_CUDA, lib
|
||||
from functools import reduce # Required in Python 3
|
||||
|
||||
# math.prod not compatible with python < 3.8
|
||||
def prod(iterable):
|
||||
return reduce(operator.mul, iterable, 1)
|
||||
|
||||
name2qmap = {}
|
||||
|
||||
|
@ -326,8 +332,8 @@ def nvidia_transform(
|
|||
dim1 = ct.c_int32(shape[0])
|
||||
dim2 = ct.c_int32(shape[1])
|
||||
elif ld is not None:
|
||||
n = math.prod(shape)
|
||||
dim1 = math.prod([shape[i] for i in ld])
|
||||
n = prod(shape)
|
||||
dim1 = prod([shape[i] for i in ld])
|
||||
dim2 = ct.c_int32(n // dim1)
|
||||
dim1 = ct.c_int32(dim1)
|
||||
else:
|
||||
|
@ -1314,7 +1320,7 @@ def igemmlt(A, B, SA, SB, out=None, Sout=None, dtype=torch.int32):
|
|||
m = shapeA[0] * shapeA[1]
|
||||
|
||||
rows = n = shapeB[0]
|
||||
assert math.prod(list(shapeA)) > 0, f'Input tensor dimensions need to be > 0: {shapeA}'
|
||||
assert prod(list(shapeA)) > 0, f'Input tensor dimensions need to be > 0: {shapeA}'
|
||||
|
||||
# if the tensor is empty, return a transformed empty tensor with the right dimensions
|
||||
if shapeA[0] == 0 and dimsA == 2:
|
||||
|
|
|
@ -65,7 +65,7 @@ if [[ -n "$CUDA_VERSION" ]]; then
|
|||
echo $URL
|
||||
echo $FILE
|
||||
wget $URL
|
||||
bash $FILE --no-drm --no-man-page --override --installpath=~/local --librarypath=$BASE_PATH/lib --toolkitpath=$BASE_PATH/$FOLDER/ --toolkit --silent
|
||||
bash $FILE --no-drm --no-man-page --override --toolkitpath=$BASE_PATH/$FOLDER/ --toolkit --silent
|
||||
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$BASE_PATH/$FOLDER/lib64/" >> ~/.bashrc
|
||||
echo "export PATH=$PATH:$BASE_PATH/$FOLDER/bin/" >> ~/.bashrc
|
||||
source ~/.bashrc
|
||||
|
|
|
@ -202,4 +202,4 @@ if [ ! -f "./bitsandbytes/libbitsandbytes_cuda117_nocublaslt.so" ]; then
|
|||
fi
|
||||
|
||||
python -m build
|
||||
python -m twine upload dist/* --verbose --repository testpypi
|
||||
python -m twine upload dist/* --verbose
|
||||
|
|
Loading…
Reference in New Issue
Block a user