Remove unused imports, fix NotImplementedError
This commit is contained in:
parent
4e60e7dc62
commit
33efe4a09f
|
@ -2,13 +2,13 @@
|
|||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
import ctypes as ct
|
||||
import os
|
||||
import random
|
||||
import math
|
||||
import ctypes as ct
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from typing import Tuple
|
||||
|
||||
lib = ct.cdll.LoadLibrary(os.path.dirname(__file__) + '/libbitsandbytes.so')
|
||||
name2qmap = {}
|
||||
|
|
|
@ -7,7 +7,6 @@ import torch
|
|||
from typing import Optional
|
||||
|
||||
from torch import Tensor
|
||||
from torch.nn.parameter import Parameter
|
||||
import torch.nn.functional as F
|
||||
|
||||
from bitsandbytes.optim import GlobalOptimManager
|
||||
|
|
|
@ -2,11 +2,8 @@
|
|||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
import torch
|
||||
from bitsandbytes.optim.optimizer import Optimizer1State
|
||||
|
||||
torch.optim.Adagrad
|
||||
|
||||
class Adagrad(Optimizer1State):
|
||||
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
|
||||
optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
|
||||
|
|
|
@ -2,9 +2,7 @@
|
|||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
import torch
|
||||
from bitsandbytes.optim.optimizer import Optimizer2State
|
||||
import bitsandbytes.functional as F
|
||||
|
||||
class AdamW(Optimizer2State):
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
|
||||
|
|
|
@ -12,7 +12,7 @@ class LARS(Optimizer1State):
|
|||
weight_decay=0, nesterov=False, optim_bits=32, args=None,
|
||||
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
|
||||
if momentum == 0:
|
||||
raise NotImplementError(f'LARS without momentum is not supported!')
|
||||
raise NotImplementedError(f'LARS without momentum is not supported!')
|
||||
super(LARS, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
|
||||
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
|
||||
|
||||
|
@ -21,7 +21,7 @@ class LARS8bit(Optimizer1State):
|
|||
weight_decay=0, nesterov=False, args=None,
|
||||
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
|
||||
if momentum == 0:
|
||||
raise NotImplementError(f'LARS without momentum is not supported!')
|
||||
raise NotImplementedError(f'LARS without momentum is not supported!')
|
||||
super(LARS8bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
|
||||
weight_decay, 8, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
|
||||
|
||||
|
@ -30,7 +30,7 @@ class LARS32bit(Optimizer1State):
|
|||
weight_decay=0, nesterov=False, args=None,
|
||||
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
|
||||
if momentum == 0:
|
||||
raise NotImplementError(f'LARS without momentum is not supported!')
|
||||
raise NotImplementedError(f'LARS without momentum is not supported!')
|
||||
super(LARS32bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
|
||||
weight_decay, 32, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
|
||||
|
||||
|
|
|
@ -2,16 +2,15 @@
|
|||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
import torch
|
||||
from bitsandbytes.optim.optimizer import Optimizer1State
|
||||
|
||||
class RMSprop(Optimizer1State):
|
||||
def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, optim_bits=32, args=None,
|
||||
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
|
||||
if alpha == 0:
|
||||
raise NotImplementError(f'RMSprop with alpha==0.0 is not supported!')
|
||||
raise NotImplementedError(f'RMSprop with alpha==0.0 is not supported!')
|
||||
if centered:
|
||||
raise NotImplementError(f'Centered RMSprop is not supported!')
|
||||
raise NotImplementedError(f'Centered RMSprop is not supported!')
|
||||
super(RMSprop, self).__init__('rmsprop', params, lr, (alpha, momentum), eps,
|
||||
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
|
||||
|
||||
|
@ -19,9 +18,9 @@ class RMSprop8bit(Optimizer1State):
|
|||
def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, args=None,
|
||||
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
|
||||
if alpha == 0:
|
||||
raise NotImplementError(f'RMSprop with alpha==0.0 is not supported!')
|
||||
raise NotImplementedError(f'RMSprop with alpha==0.0 is not supported!')
|
||||
if centered:
|
||||
raise NotImplementError(f'Centered RMSprop is not supported!')
|
||||
raise NotImplementedError(f'Centered RMSprop is not supported!')
|
||||
super(RMSprop8bit, self).__init__('rmsprop', params, lr, (alpha, momentum), eps,
|
||||
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
|
||||
|
||||
|
@ -30,7 +29,7 @@ class RMSprop32bit(Optimizer1State):
|
|||
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
|
||||
|
||||
if alpha == 0:
|
||||
raise NotImplementError(f'RMSprop with alpha==0.0 is not supported!')
|
||||
raise NotImplementedError(f'RMSprop with alpha==0.0 is not supported!')
|
||||
if centered:
|
||||
raise NotImplementError(f'Centered RMSprop is not supported!')
|
||||
super(RMSprop32bit, self).__init__('rmsprop', params, lr, (alpha, momentum), eps,
|
||||
|
|
|
@ -9,7 +9,7 @@ class SGD(Optimizer1State):
|
|||
weight_decay=0, nesterov=False, optim_bits=32, args=None,
|
||||
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
|
||||
if momentum == 0:
|
||||
raise NotImplementError(f'SGD without momentum is not supported!')
|
||||
raise NotImplementedError(f'SGD without momentum is not supported!')
|
||||
super(SGD, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
|
||||
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
|
||||
|
||||
|
@ -18,7 +18,7 @@ class SGD8bit(Optimizer1State):
|
|||
weight_decay=0, nesterov=False, args=None,
|
||||
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
|
||||
if momentum == 0:
|
||||
raise NotImplementError(f'SGD without momentum is not supported!')
|
||||
raise NotImplementedError(f'SGD without momentum is not supported!')
|
||||
super(SGD8bit, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
|
||||
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
|
||||
|
||||
|
@ -27,6 +27,6 @@ class SGD32bit(Optimizer1State):
|
|||
weight_decay=0, nesterov=False, args=None,
|
||||
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
|
||||
if momentum == 0:
|
||||
raise NotImplementError(f'SGD without momentum is not supported!')
|
||||
raise NotImplementedError(f'SGD without momentum is not supported!')
|
||||
super(SGD32bit, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
|
||||
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
|
||||
|
|
|
@ -6,10 +6,6 @@ import pytest
|
|||
import torch
|
||||
import bitsandbytes as bnb
|
||||
|
||||
from itertools import product
|
||||
|
||||
from bitsandbytes import functional as F
|
||||
|
||||
|
||||
@pytest.mark.parametrize("embcls", [bnb.nn.Embedding, bnb.nn.StableEmbedding], ids=['Embedding', 'StableEmbedding'])
|
||||
def test_embeddings(embcls):
|
||||
|
|
|
@ -7,7 +7,6 @@ import time
|
|||
import shutil
|
||||
import uuid
|
||||
import pytest
|
||||
import ctypes
|
||||
import torch
|
||||
import bitsandbytes as bnb
|
||||
import bitsandbytes.functional as F
|
||||
|
|
Loading…
Reference in New Issue
Block a user