Added some more docs and comments.

This commit is contained in:
Tim Dettmers 2022-08-01 19:43:09 -07:00
parent 8bf3e9faab
commit 3479d02a76
2 changed files with 36 additions and 26 deletions

View File

@ -27,17 +27,24 @@ from .utils import print_err, warn_of_missing_prerequisite, execute_and_return
def check_cuda_result(cuda, result_val):
# 3. Check for CUDA errors
if result_val != 0:
# TODO: undefined name 'error_str'
error_str = ctypes.c_char_p()
cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
print("Count not initialize CUDA - failure!")
raise Exception("CUDA exception!")
return result_val
raise Exception(f"CUDA exception! ERROR: {error_str}")
# taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
def get_compute_capability():
libnames = ("libcuda.so", "libcuda.dylib", "cuda.dll")
# 1. find libcuda.so library (GPU driver) (/usr/lib)
# init_device -> init variables -> call function by reference
# 2. call extern C function to determine CC
# (https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
# 3. Check for CUDA errors
# https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
# 1. find libcuda.so library (GPU driver) (/usr/lib)
libnames = ("libcuda.so",)
for libname in libnames:
try:
cuda = ctypes.CDLL(libname)
@ -54,31 +61,23 @@ def get_compute_capability():
result = ctypes.c_int()
device = ctypes.c_int()
# TODO: local variable 'context' is assigned to but never used
context = ctypes.c_void_p()
# TODO: local variable 'error_str' is assigned to but never used
error_str = ctypes.c_char_p()
result = check_cuda_result(cuda, cuda.cuInit(0))
check_cuda_result(cuda, cuda.cuInit(0))
result = check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
ccs = []
for i in range(nGpus.value):
result = check_cuda_result(
cuda, cuda.cuDeviceGet(ctypes.byref(device), i)
)
result = check_cuda_result(
cuda,
cuda.cuDeviceComputeCapability(
ctypes.byref(cc_major), ctypes.byref(cc_minor), device
),
)
check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
ref_major = ctypes(cc_major)
ref_minor = ctypes(cc_minor)
# 2. call extern C function to determine CC
check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device))
ccs.append(f"{cc_major.value}.{cc_minor.value}")
# TODO: handle different compute capabilities; for now, take the max
ccs.sort()
# return ccs[-1]
return ccs
max_cc = ccs[-1]
return max_cc
CUDA_RUNTIME_LIB: str = "libcudart.so"
@ -89,6 +88,7 @@ def tokenize_paths(paths: str) -> Set[Path]:
def resolve_env_variable(env_var):
'''Searches a given envirionmental library or path for the CUDA runtime library (libcudart.so)'''
paths: Set[Path] = tokenize_paths(env_var)
non_existent_directories: Set[Path] = {
@ -112,13 +112,16 @@ def resolve_env_variable(env_var):
f"Found duplicate {CUDA_RUNTIME_LIB} files: {cuda_runtime_libs}.."
)
raise FileNotFoundError(err_msg)
elif len(cuda_runtime_libs) == 0: return None
elif len(cuda_runtime_libs) == 0: return None # this is not en error, since other envs can contain CUDA
else: return next(iter(cuda_runtime_libs)) # for now just return the first
def get_cuda_runtime_lib_path() -> Union[Path, None]:
"""# TODO: add doc-string"""
'''Searches conda installation and environmental paths for a cuda installations.'''
cuda_runtime_libs = []
# CONDA_PREFIX/lib is the default location for a default conda
# install of pytorch. This location takes priortiy over all
# other defined variables
if 'CONDA_PREFIX' in os.environ:
lib_conda_path = f'{os.environ["CONDA_PREFIX"]}/lib/'
print(lib_conda_path)
@ -126,6 +129,8 @@ def get_cuda_runtime_lib_path() -> Union[Path, None]:
if len(cuda_runtime_libs) == 1: return cuda_runtime_libs[0]
# if CONDA_PREFIX does not have the library, search the environment
# (in particualr LD_LIBRARY PATH)
for var in os.environ:
cuda_runtime_libs.append(resolve_env_variable(var))
@ -146,17 +151,19 @@ def evaluate_cuda_setup():
if not (has_gpu := bool(cc)):
print(
"WARNING: No GPU detected! Check our CUDA paths. Processing to load CPU-only library..."
"WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library..."
)
return binary_name
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
# TODO:
# (1) Model missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (2) Multiple CUDA versions installed
cuda_home = str(Path(cuda_path).parent.parent)
# we use ls -l instead of nvcc to determine the cuda version
# since most installations will have the libcudart.so installed, but not the compiler
ls_output, err = execute_and_return(f"ls -l {cuda_path}")
major, minor, revision = ls_output.split(' ')[-1].replace('libcudart.so.', '').split('.')
cuda_version_string = f"{major}{minor}"

View File

@ -92,6 +92,9 @@ def test_get_cuda_runtime_lib_path__non_existent_dir(capsys, tmp_path):
def test_full_system():
## this only tests the cuda version and not compute capability
# if CONDA_PREFIX exists, it has priority before all other env variables
# but it does not contain the library directly, so we need to look at the a sub-folder
version = ''
if 'CONDA_PREFIX' in os.environ:
ls_output, err = bnb.utils.execute_and_return(f'ls -l {os.environ["CONDA_PREFIX"]}/lib/libcudart.so')