Added some more docs and comments.
This commit is contained in:
parent
8bf3e9faab
commit
3479d02a76
|
@ -27,17 +27,24 @@ from .utils import print_err, warn_of_missing_prerequisite, execute_and_return
|
|||
|
||||
|
||||
def check_cuda_result(cuda, result_val):
|
||||
# 3. Check for CUDA errors
|
||||
if result_val != 0:
|
||||
# TODO: undefined name 'error_str'
|
||||
error_str = ctypes.c_char_p()
|
||||
cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
|
||||
print("Count not initialize CUDA - failure!")
|
||||
raise Exception("CUDA exception!")
|
||||
return result_val
|
||||
raise Exception(f"CUDA exception! ERROR: {error_str}")
|
||||
|
||||
|
||||
# taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
|
||||
def get_compute_capability():
|
||||
libnames = ("libcuda.so", "libcuda.dylib", "cuda.dll")
|
||||
# 1. find libcuda.so library (GPU driver) (/usr/lib)
|
||||
# init_device -> init variables -> call function by reference
|
||||
# 2. call extern C function to determine CC
|
||||
# (https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
|
||||
# 3. Check for CUDA errors
|
||||
# https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
|
||||
|
||||
# 1. find libcuda.so library (GPU driver) (/usr/lib)
|
||||
libnames = ("libcuda.so",)
|
||||
for libname in libnames:
|
||||
try:
|
||||
cuda = ctypes.CDLL(libname)
|
||||
|
@ -54,31 +61,23 @@ def get_compute_capability():
|
|||
|
||||
result = ctypes.c_int()
|
||||
device = ctypes.c_int()
|
||||
# TODO: local variable 'context' is assigned to but never used
|
||||
context = ctypes.c_void_p()
|
||||
# TODO: local variable 'error_str' is assigned to but never used
|
||||
error_str = ctypes.c_char_p()
|
||||
|
||||
result = check_cuda_result(cuda, cuda.cuInit(0))
|
||||
check_cuda_result(cuda, cuda.cuInit(0))
|
||||
|
||||
result = check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
|
||||
check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
|
||||
ccs = []
|
||||
for i in range(nGpus.value):
|
||||
result = check_cuda_result(
|
||||
cuda, cuda.cuDeviceGet(ctypes.byref(device), i)
|
||||
)
|
||||
result = check_cuda_result(
|
||||
cuda,
|
||||
cuda.cuDeviceComputeCapability(
|
||||
ctypes.byref(cc_major), ctypes.byref(cc_minor), device
|
||||
),
|
||||
)
|
||||
check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
|
||||
ref_major = ctypes(cc_major)
|
||||
ref_minor = ctypes(cc_minor)
|
||||
# 2. call extern C function to determine CC
|
||||
check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device))
|
||||
ccs.append(f"{cc_major.value}.{cc_minor.value}")
|
||||
|
||||
# TODO: handle different compute capabilities; for now, take the max
|
||||
ccs.sort()
|
||||
# return ccs[-1]
|
||||
return ccs
|
||||
max_cc = ccs[-1]
|
||||
return max_cc
|
||||
|
||||
|
||||
CUDA_RUNTIME_LIB: str = "libcudart.so"
|
||||
|
@ -89,6 +88,7 @@ def tokenize_paths(paths: str) -> Set[Path]:
|
|||
|
||||
|
||||
def resolve_env_variable(env_var):
|
||||
'''Searches a given envirionmental library or path for the CUDA runtime library (libcudart.so)'''
|
||||
paths: Set[Path] = tokenize_paths(env_var)
|
||||
|
||||
non_existent_directories: Set[Path] = {
|
||||
|
@ -112,13 +112,16 @@ def resolve_env_variable(env_var):
|
|||
f"Found duplicate {CUDA_RUNTIME_LIB} files: {cuda_runtime_libs}.."
|
||||
)
|
||||
raise FileNotFoundError(err_msg)
|
||||
elif len(cuda_runtime_libs) == 0: return None
|
||||
elif len(cuda_runtime_libs) == 0: return None # this is not en error, since other envs can contain CUDA
|
||||
else: return next(iter(cuda_runtime_libs)) # for now just return the first
|
||||
|
||||
def get_cuda_runtime_lib_path() -> Union[Path, None]:
|
||||
"""# TODO: add doc-string"""
|
||||
'''Searches conda installation and environmental paths for a cuda installations.'''
|
||||
|
||||
cuda_runtime_libs = []
|
||||
# CONDA_PREFIX/lib is the default location for a default conda
|
||||
# install of pytorch. This location takes priortiy over all
|
||||
# other defined variables
|
||||
if 'CONDA_PREFIX' in os.environ:
|
||||
lib_conda_path = f'{os.environ["CONDA_PREFIX"]}/lib/'
|
||||
print(lib_conda_path)
|
||||
|
@ -126,6 +129,8 @@ def get_cuda_runtime_lib_path() -> Union[Path, None]:
|
|||
|
||||
if len(cuda_runtime_libs) == 1: return cuda_runtime_libs[0]
|
||||
|
||||
# if CONDA_PREFIX does not have the library, search the environment
|
||||
# (in particualr LD_LIBRARY PATH)
|
||||
for var in os.environ:
|
||||
cuda_runtime_libs.append(resolve_env_variable(var))
|
||||
|
||||
|
@ -146,17 +151,19 @@ def evaluate_cuda_setup():
|
|||
|
||||
if not (has_gpu := bool(cc)):
|
||||
print(
|
||||
"WARNING: No GPU detected! Check our CUDA paths. Processing to load CPU-only library..."
|
||||
"WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library..."
|
||||
)
|
||||
return binary_name
|
||||
|
||||
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
|
||||
|
||||
# TODO:
|
||||
# (1) Model missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
|
||||
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
|
||||
# (2) Multiple CUDA versions installed
|
||||
|
||||
cuda_home = str(Path(cuda_path).parent.parent)
|
||||
# we use ls -l instead of nvcc to determine the cuda version
|
||||
# since most installations will have the libcudart.so installed, but not the compiler
|
||||
ls_output, err = execute_and_return(f"ls -l {cuda_path}")
|
||||
major, minor, revision = ls_output.split(' ')[-1].replace('libcudart.so.', '').split('.')
|
||||
cuda_version_string = f"{major}{minor}"
|
||||
|
|
|
@ -92,6 +92,9 @@ def test_get_cuda_runtime_lib_path__non_existent_dir(capsys, tmp_path):
|
|||
|
||||
def test_full_system():
|
||||
## this only tests the cuda version and not compute capability
|
||||
|
||||
# if CONDA_PREFIX exists, it has priority before all other env variables
|
||||
# but it does not contain the library directly, so we need to look at the a sub-folder
|
||||
version = ''
|
||||
if 'CONDA_PREFIX' in os.environ:
|
||||
ls_output, err = bnb.utils.execute_and_return(f'ls -l {os.environ["CONDA_PREFIX"]}/lib/libcudart.so')
|
||||
|
|
Loading…
Reference in New Issue
Block a user