Added fixes for the case that matmullt dim A is zero, e.g. [0, 768].

This commit is contained in:
Tim Dettmers 2022-08-03 11:54:01 -07:00
parent 2f01865a2f
commit 451fd9506e
4 changed files with 60 additions and 28 deletions

View File

@ -1,4 +1,5 @@
import torch
import math
import bitsandbytes as bnb
import bitsandbytes.functional as F
@ -162,6 +163,17 @@ class MatMul8bitLt(torch.autograd.Function):
@staticmethod
def forward(ctx, A, B, out=None, state=MatmulLtState()):
# default to pytorch behavior if inputs are empty
ctx.is_empty = False
if math.prod(A.shape) == 0:
ctx.is_empty = True
ctx.A = A
ctx.B = B
if A.shape[-1] == B.shape[0]:
return torch.empty(A.shape[:-1]+B.shape[1:], dtype=torch.float16, device=A.device)
else:
return torch.empty(A.shape[:-1]+B.shape[:1], dtype=torch.float16, device=A.device)
# 1. Quantize A
# 2. Quantize B
# 3. Matmul
@ -265,6 +277,8 @@ class MatMul8bitLt(torch.autograd.Function):
@staticmethod
def backward(ctx, grad_output):
if ctx.is_empty:
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None
req_gradA, req_gradB = ctx.req_grads
CAt, subA = ctx.tensors
SCAt, idx = ctx.tensor_states
@ -293,7 +307,7 @@ class MatMul8bitLt(torch.autograd.Function):
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape)
return grad_A, grad_B, None, None, None, None, None
return grad_A, grad_B, None, None
matmul = MatMul8bitLt.apply

View File

@ -4,9 +4,10 @@
# LICENSE file in the root directory of this source tree.
import ctypes as ct
import random
from typing import Tuple
import math
import torch
from typing import Tuple
from torch import Tensor
from .cextension import lib, COMPILED_WITH_CUDA
@ -919,15 +920,22 @@ def igemmlt(A, B, SA, SB, out=None, Sout=None, dtype=torch.int32):
shapeB = SB[0]
dimsA = len(shapeA)
dimsB = len(shapeB)
assert dimsB == 2, 'Only two dimensional matrices are supported for argument B'
if dimsA == 2:
m = shapeA[0]
elif dimsA == 3:
m = shapeA[0]*shapeA[1]
if dimsB == 2:
rows = n = shapeB[0]
elif dimsB == 3:
rows = n = shapeB[0]*shapeB[1]
rows = n = shapeB[0]
assert math.prod(list(shapeA)) > 0, f'Input tensor dimensions need to be > 0: {shapeA}'
print(shapeA, math.prod(shapeA), math.prod(list(shapeA)))
print('aaa')
# if the tensor is empty, return a transformed empty tensor with the right dimensions
if shapeA[0] == 0 and dimsA == 2:
return torch.empty((0, shapeB[0]), device=A.device, dtype=torch.float16)
elif shapeA[1] == 0 and dimsA == 3:
return torch.empty(tuple(shapeA[:2] + [shapeB[0]]), device=A.device, dtype=torch.float16)
if dimsA == 2 and out is None:
out, Sout = get_transform_buffer((shapeA[0], shapeB[0]), dtype, A.device, 'col32', 'row')
@ -984,6 +992,7 @@ def igemmlt(A, B, SA, SB, out=None, Sout=None, dtype=torch.int32):
has_error = lib.cigemmlt_ampere_8(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc)
if has_error == 1:
print(f'A: {shapeA}, B: {shapeB}, C: {Sout[0]}; (lda, ldb, ldc): {(lda, ldb, ldc)}; (m, n, k): {(m, n, k)}')
raise Exception('cublasLt ran into an error!')
torch.cuda.set_device(prev_device)

View File

@ -459,8 +459,6 @@ void dequant_mm_int32_fp16(int *A, float *rowStats, float *colStats, half *out,
assert(num_blocks <= 65535 && "CUDA ERROR: Maximum number of blocks for kernel exceeded");
assert(threads <= tilesize);
//cout << num_blocks << " blocks" << endl;
kdequant_mm_int32_fp16<4, 128, 512><<<num_blocks, threads>>>(A, rowStats, colStats, out, newRowStats, newcolStats, numRows, numCols, tileCols, n);
CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
@ -473,11 +471,14 @@ void getColRowStats(half * A, float *rowStats, float *colStats, int *nnz_count_r
int tile_cols = STATS_THREADS*STATS_ITEMS;
int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
int tiledRows = fill_up_to_nearest_multiple(rows, STATS_ROWS);
int num_blocks = (tiledCols/tile_cols) * (tiledRows/STATS_ROWS);
int row_tiles = (tiledRows/STATS_ROWS);
int col_tiles = (tiledCols/tile_cols);
row_tiles = row_tiles > 0 ? row_tiles : 1;
col_tiles = col_tiles > 0 ? col_tiles : 1;
int num_blocks = row_tiles * col_tiles;
assert(num_blocks <= 65535 && "CUDA ERROR: Maximum number of blocks for kernel exceeded");
if(nnz_threshold == 0.0)
kgetColRowStats<half, STATS_THREADS, STATS_ITEMS, STATS_ROWS, STATS_THREADS*STATS_ITEMS, 0><<<num_blocks, STATS_THREADS>>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols);
else if(nnz_threshold != 0.0)
@ -494,13 +495,14 @@ void doubleRowColQuant(half * A, float *rowStats, float *colStats, char *out_col
int tile_rows = 16;
int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
int num_blocks = (tiledCols/tile_cols) * (tiledRows/tile_rows);
int row_tiles = (tiledRows/tile_rows);
int col_tiles = (tiledCols/tile_cols);
row_tiles = row_tiles > 0 ? row_tiles : 1;
col_tiles = col_tiles > 0 ? col_tiles : 1;
int num_blocks = row_tiles * col_tiles;
assert(num_blocks <= 65535 && "CUDA ERROR: Maximum number of blocks for kernel exceeded");
//cout << cols << " " << tiledCols << " " << tiledRows << endl;
//cout << "num blocks " << num_blocks << endl;
//cout << A << " " << out_col_normed << endl;
if(threshold > 0.0f)
kDoubleRowColQuant<64, 4, 16, 64*4, 1><<<num_blocks, threads>>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols);
else
@ -518,7 +520,12 @@ template <int FORMAT, int TRANSPOSE> void transformRowToFormat(char * A, char *o
int tile_rows = 32;
int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols);
int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows);
int num_blocks = (tiledCols/tile_cols) * (tiledRows/tile_rows);
int row_tiles = (tiledRows/tile_rows);
int col_tiles = (tiledCols/tile_cols);
row_tiles = row_tiles > 0 ? row_tiles : 1;
col_tiles = col_tiles > 0 ? col_tiles : 1;
int num_blocks = row_tiles * col_tiles;
assert(num_blocks <= 65535 && "CUDA ERROR: Maximum number of blocks for kernel exceeded");
int outCols = fill_up_to_nearest_multiple(cols, 32);
int outRows = fill_up_to_nearest_multiple(rows, 32);
@ -545,10 +552,6 @@ template <int FORMAT, int TRANSPOSE> void transformRowToFormat(char * A, char *o
}
}
//cout << cols << " " << tiledCols << " " << tiledRows << " " << outCols << endl;
//cout << "num blocks " << num_blocks << endl;
//cout << A << " " << out_col_normed << endl;
kTransformRowToFormat<256, 8, 32, 32*8, TRANSPOSE, FORMAT><<<num_blocks, threads>>>(A, out, rows, cols, tiledCols, outRows, outCols);
CUDA_CHECK_RETURN(cudaPeekAtLastError());
}

View File

@ -23,7 +23,8 @@ str_values = list(product(dim1,dim2,dim3,dim4,str_funcs, dtype, req_grad_str, st
names = ['dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}'.format(*vals) for vals in str_values]
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose", values, ids=names)
def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
dim2 = dim2 - (dim2 % 16)
if dim2 > 0:
dim2 = dim2 - (dim2 % 16)
dim3 = dim3 - (dim3 % 16)
dim4 = dim4 - (dim4 % 16)
for i in range(k):
@ -179,6 +180,7 @@ dim2 = torch.randint(32,96, size=(n,)).tolist()
dim3 = torch.randint(32,96, size=(n,)).tolist()
dim4 = torch.randint(32,96, size=(n,)).tolist()
dim2.append(0)
#dim1 = (17,)
#dim2 = (7,)
#dim3 = (37,)
@ -234,9 +236,9 @@ def test_matmullt(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, dec
err = torch.abs(out_bnb-out_torch).mean().item()
#print(f'abs error {err:.4f}')
idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
assert (idx==0).sum().item() < n*0.0175
assert (idx==0).sum().item() <= n*0.0175
idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
assert (idx==0).sum().item() < n*0.001
assert (idx==0).sum().item() <= n*0.001
if has_fp16_weights:
if any(req_grad):
@ -260,11 +262,15 @@ def test_matmullt(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, dec
torch.testing.assert_allclose(gradA1, gradA2, atol=0.015, rtol=0.1)
if req_grad[1]:
n = gradB1.numel()
assert torch.abs(gradB1).sum() > 0.0
assert torch.abs(gradB2).sum() > 0.0
if dim2 > 0:
assert torch.abs(gradB1).sum() > 0.0
assert torch.abs(gradB2).sum() > 0.0
else:
assert torch.abs(gradB1).sum() == 0.0
assert torch.abs(gradB2).sum() == 0.0
idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
assert (idx==0).sum().item() < n*0.1
assert (idx==0).sum().item() <= n*0.1
idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
assert (idx==0).sum().item() < n*0.02
assert (idx==0).sum().item() <= n*0.02
torch.testing.assert_allclose(gradB1, gradB2, atol=0.18, rtol=0.3)