pre-triton update

This commit is contained in:
Mitchell Wortsman 2023-03-24 05:44:42 +00:00
parent 75377d125e
commit 51f8bb7133
4 changed files with 360 additions and 13 deletions

View File

@ -11,7 +11,10 @@ from .autograd._functions import (
matmul_cublas,
mm_cublas,
matmul_fp8,
matmul_mixed
matmul_mixed,
matmul_fp8_global,
matmul_fp4,
matmul_fp8_mixed,
)
from .cextension import COMPILED_WITH_CUDA
from .nn import modules

View File

@ -395,7 +395,7 @@ class MatMulFP8(torch.autograd.Function):
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
@staticmethod
def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024):
def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024, bsz2=1024):
# default of pytorch behavior if inputs are empty
ctx.is_empty = False
if prod(A.shape) == 0:
@ -425,6 +425,7 @@ class MatMulFP8(torch.autograd.Function):
ctx.fw_code = fw_code
ctx.bw_code = bw_code
ctx.bsz = bsz
ctx.bsz2 = bsz2
ctx.dtype_A, ctx.dtype_B = A.dtype, B.dtype
if any(ctx.needs_input_grad[:2]):
@ -440,14 +441,13 @@ class MatMulFP8(torch.autograd.Function):
if ctx.is_empty:
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None, None, None
req_gradA, req_gradB, _, _, _, _ = ctx.needs_input_grad
req_gradA, req_gradB, _, _, _, _, _ = ctx.needs_input_grad
A, B = ctx.tensors
grad_A, grad_B = None, None
# TODO: Fix blocksize to be output_dim
cgrad_out, state = F.quantize_blockwise(grad_output, code=ctx.bw_code, blocksize=ctx.bsz)
fp8out = F.dequantize_blockwise(cgrad_out, state, blocksize=ctx.bsz).to(grad_output.dtype)
cgrad_out, state = F.quantize_blockwise(grad_output, code=ctx.bw_code, blocksize=ctx.bsz2)
fp8out = F.dequantize_blockwise(cgrad_out, state, blocksize=ctx.bsz2).to(grad_output.dtype)
cgrad_output_2, state_2 = F.quantize(grad_output.float(), code=ctx.bw_code)
fp8out_2 = F.dequantize(cgrad_output_2, state_2).to(grad_output.dtype)
@ -467,7 +467,249 @@ class MatMulFP8(torch.autograd.Function):
fp8At = F.dequantize(cA, state).to(A.dtype)
grad_B = torch.matmul(fp8At.to(fp8out_2.dtype), fp8out_2).to(B.dtype)
return grad_A, grad_B, None, None, None, None
return grad_A, grad_B, None, None, None, None, None
class MatMulFP8Mixed(torch.autograd.Function):
# forward is the same, but we added the fallback for pre-turing GPUs
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
@staticmethod
def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024, bsz2=1024):
# default of pytorch behavior if inputs are empty
ctx.is_empty = False
if prod(A.shape) == 0:
ctx.is_empty = True
ctx.A = A
ctx.B = B
B_shape = B.shape
if A.shape[-1] == B_shape[0]:
return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device)
else:
return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device)
# 1. Dequantize
# 2. MatmulnN
cA, state = F.quantize_blockwise(A, code=fw_code, blocksize=bsz)
fp8A = F.dequantize_blockwise(cA, state, blocksize=bsz).to(A.dtype)
cB, state = F.quantize(B.float(), code=fw_code)
fp8B = F.dequantize(cB, state).to(B.dtype)
output = torch.matmul(fp8A, fp8B)
# output is half
# 3. Save state
ctx.fw_code = fw_code
ctx.bw_code = bw_code
ctx.bsz = bsz
ctx.bsz2 = bsz2
ctx.dtype_A, ctx.dtype_B = A.dtype, B.dtype
if any(ctx.needs_input_grad[:2]):
# NOTE: we send back A, and re-quant.
ctx.tensors = (A, fp8B)
else:
ctx.tensors = (None, None)
return output
@staticmethod
def backward(ctx, grad_output):
if ctx.is_empty:
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None, None, None
req_gradA, req_gradB, _, _, _, _, _ = ctx.needs_input_grad
A, B = ctx.tensors
grad_A, grad_B = None, None
# TODO: Fix blocksize to be output_dim
cgrad_out, state = F.quantize_blockwise(grad_output, code=ctx.bw_code, blocksize=ctx.bsz2)
fp8out = F.dequantize_blockwise(cgrad_out, state, blocksize=ctx.bsz2).to(grad_output.dtype)
# cgrad_output_2, state_2 = F.quantize(grad_output.float(), code=ctx.bw_code)
# fp8out_2 = F.dequantize(cgrad_output_2, state_2).to(grad_output.dtype)
# grad_output_reshape = grad_output.reshape(-1, grad_output.shape[-1]).contiguous()
# fp8grad_transpose, stategrad_transpose = F.vectorwise_quant(grad_output_reshape, dim=0, quant_type='vector')
# fp8out_transpose = (fp8grad_transpose / 7) * stategrad_transpose
# fp8out_transpose = fp8out_transpose.view(grad_output.shape[0], grad_output.shape[1], grad_output.shape[2])
# not supported by PyTorch. TODO: create work-around
if req_gradA:
grad_A = torch.matmul(fp8out, B.t().to(fp8out.dtype)).to(A.dtype)
if req_gradB:
At = A.transpose(2, 1).contiguous()
# cA, state = F.quantize(At.float(), code=ctx.fw_code)
# fp8At = F.dequantize(cA, state).to(A.dtype)
grad_B = torch.matmul(At.to(grad_output.dtype), grad_output).to(B.dtype)
return grad_A, grad_B, None, None, None, None, None
class MatMulFP4(torch.autograd.Function):
# forward is the same, but we added the fallback for pre-turing GPUs
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
@staticmethod
def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024, bsz2=1024):
# default of pytorch behavior if inputs are empty
ctx.is_empty = False
if prod(A.shape) == 0:
ctx.is_empty = True
ctx.A = A
ctx.B = B
B_shape = B.shape
if A.shape[-1] == B_shape[0]:
return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device)
else:
return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device)
# 1. Dequantize
# 2. MatmulnN
cA, state = F.quantize_blockwise(A, code=fw_code, blocksize=bsz)
fp8A = F.dequantize_blockwise(cA, state, blocksize=bsz).to(A.dtype)
cB, state = F.quantize(B.float(), code=fw_code)
fp8B = F.dequantize(cB, state).to(B.dtype)
output = torch.matmul(fp8A, fp8B)
# output is half
# 3. Save state
ctx.fw_code = fw_code
ctx.bw_code = bw_code
ctx.bsz = bsz
ctx.bsz2 = bsz2
ctx.dtype_A, ctx.dtype_B = A.dtype, B.dtype
if any(ctx.needs_input_grad[:2]):
# NOTE: we send back A, and re-quant.
ctx.tensors = (A, fp8B)
else:
ctx.tensors = (None, None)
return output
@staticmethod
def backward(ctx, grad_output):
if ctx.is_empty:
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None, None, None
req_gradA, req_gradB, _, _, _, _, _ = ctx.needs_input_grad
A, B = ctx.tensors
grad_A, grad_B = None, None
# TODO: Fix blocksize to be output_dim
cgrad_out, state = F.quantize_blockwise(grad_output, code=ctx.bw_code, blocksize=ctx.bsz2)
fp8out = F.dequantize_blockwise(cgrad_out, state, blocksize=ctx.bsz2).to(grad_output.dtype)
cgrad_output_2, state_2 = F.quantize(grad_output.float(), code=ctx.bw_code)
fp8out_2 = F.dequantize(cgrad_output_2, state_2).to(grad_output.dtype)
# grad_output_reshape = grad_output.reshape(-1, grad_output.shape[-1]).contiguous()
# fp8grad_transpose, stategrad_transpose = F.vectorwise_quant(grad_output_reshape, dim=0, quant_type='vector')
# fp8out_transpose = (fp8grad_transpose / 7) * stategrad_transpose
# fp8out_transpose = fp8out_transpose.view(grad_output.shape[0], grad_output.shape[1], grad_output.shape[2])
# not supported by PyTorch. TODO: create work-around
if req_gradA:
grad_A = torch.matmul(fp8out, B.t().to(fp8out.dtype)).to(A.dtype)
if req_gradB:
At = A.transpose(2, 1).contiguous()
cA, state = F.quantize(At.float(), code=ctx.bw_code)
fp8At = F.dequantize(cA, state).to(A.dtype)
grad_B = torch.matmul(fp8At.to(fp8out_2.dtype), fp8out_2).to(B.dtype)
return grad_A, grad_B, None, None, None, None, None
class MatMulFP8Global(torch.autograd.Function):
# forward is the same, but we added the fallback for pre-turing GPUs
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
@staticmethod
def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024, bsz2=1024):
# default of pytorch behavior if inputs are empty
ctx.is_empty = False
if prod(A.shape) == 0:
ctx.is_empty = True
ctx.A = A
ctx.B = B
B_shape = B.shape
if A.shape[-1] == B_shape[0]:
return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device)
else:
return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device)
# 1. Dequantize
# 2. MatmulnN
cA, state = F.quantize(A.float(), code=fw_code)
fp8A = F.dequantize(cA, state).to(A.dtype)
cB, state = F.quantize(B.float(), code=fw_code)
fp8B = F.dequantize(cB, state).to(B.dtype)
output = torch.matmul(fp8A, fp8B)
# output is half
# 3. Save state
ctx.fw_code = fw_code
ctx.bw_code = bw_code
ctx.bsz = bsz
ctx.bsz2 = bsz2
ctx.dtype_A, ctx.dtype_B = A.dtype, B.dtype
if any(ctx.needs_input_grad[:2]):
# NOTE: we send back A, and re-quant.
ctx.tensors = (A, fp8B)
else:
ctx.tensors = (None, None)
return output
@staticmethod
def backward(ctx, grad_output):
if ctx.is_empty:
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None, None, None
req_gradA, req_gradB, _, _, _, _, _ = ctx.needs_input_grad
A, B = ctx.tensors
grad_A, grad_B = None, None
# TODO: Fix blocksize to be output_dim
cgrad_out, state = F.quantize(grad_output.float(), code=ctx.bw_code)
fp8out = F.dequantize(cgrad_out, state).to(grad_output.dtype)
# cgrad_output_2, state_2 = F.quantize(grad_output.float(), code=ctx.bw_code)
# fp8out_2 = F.dequantize(cgrad_output_2, state_2).to(grad_output.dtype)
# grad_output_reshape = grad_output.reshape(-1, grad_output.shape[-1]).contiguous()
# fp8grad_transpose, stategrad_transpose = F.vectorwise_quant(grad_output_reshape, dim=0, quant_type='vector')
# fp8out_transpose = (fp8grad_transpose / 7) * stategrad_transpose
# fp8out_transpose = fp8out_transpose.view(grad_output.shape[0], grad_output.shape[1], grad_output.shape[2])
# not supported by PyTorch. TODO: create work-around
if req_gradA:
grad_A = torch.matmul(fp8out, B.t().to(fp8out.dtype)).to(A.dtype)
if req_gradB:
At = A.transpose(2, 1).contiguous()
cA, state = F.quantize(At.float(), code=ctx.fw_code)
fp8At = F.dequantize(cA, state).to(A.dtype)
grad_B = torch.matmul(fp8At.to(fp8out.dtype), fp8out).to(B.dtype)
return grad_A, grad_B, None, None, None, None, None
class MatMul8bitMixed(torch.autograd.Function):
@ -520,12 +762,14 @@ class MatMul8bitMixed(torch.autograd.Function):
# we also need to convert it to the turing/ampere format
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
else:
#print('A shape', A.shape)
if not state.has_fp16_weights and state.CxB is None:
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
subA = None
# 2. Quantize B
if state.has_fp16_weights:
#print('B shape', B.shape)
has_grad = True if (getattr(B, "grad", None) is not None) else False
is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1)
if is_transposed:
@ -633,6 +877,8 @@ class MatMul8bitMixed(torch.autograd.Function):
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16))
if req_gradB:
# print('back A shape', A.shape)
# print('grad output t shape', grad_output.t().shape)
grad_B = torch.matmul(grad_output.t(), A)
if req_gradA:
@ -642,6 +888,8 @@ class MatMul8bitMixed(torch.autograd.Function):
state.CxBt, state.SBt = F.transform(
state.CBt, to_order=formatB, transpose=True
)
# print('back B shape', state.CxBt.shape)
# print('back grad shape', C32grad.shape)
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A)
@ -668,8 +916,18 @@ def matmul(
return MatMul8bitLt.apply(A, B, out, bias, state)
def matmul_fp8(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1):
return MatMulFP8.apply(A, B, out, fw_code, bw_code, bsz)
def matmul_fp8(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1, bsz2 : int = -1):
return MatMulFP8.apply(A, B, out, fw_code, bw_code, bsz, bsz2)
def matmul_fp8_global(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1, bsz2 : int = -1):
return MatMulFP8Global.apply(A, B, out, fw_code, bw_code, bsz, bsz2)
def matmul_fp8_mixed(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1, bsz2 : int = -1):
return MatMulFP8Mixed.apply(A, B, out, fw_code, bw_code, bsz, bsz2)
def matmul_fp4(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1, bsz2 : int = -1):
return MatMulFP4.apply(A, B, out, fw_code, bw_code, bsz, bsz2)
def matmul_mixed(

View File

@ -2,4 +2,4 @@
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .modules import Int8Params, Linear8bitLt, StableEmbedding, OutlierAwareLinear, Fake4bitLinear, LinearFP8, LinearInt8, Linear8bitLtThresh, LinearInt8Cast, Linear8bitLt2, Linear8bitLtMixed
from .modules import Int8Params, Linear8bitLt, StableEmbedding, OutlierAwareLinear, Fake4bitLinear, LinearFP8, LinearInt8, Linear8bitLtThresh, LinearInt8Cast, Linear8bitLt2, Linear8bitLtMixed, LinearFP8Global, LinearFP4, LinearFP8Mixed

View File

@ -498,14 +498,69 @@ class LinearFP8(nn.Linear):
if input_features > array[i + 1]:
self.bsz = k
break
print('block size is', self.bsz)
for i, k in enumerate(array):
if output_features > array[i + 1]:
self.bsz2 = k
break
def forward(self, x: torch.Tensor):
if self.fw_code is None:
self.bw_code = bnb.functional.create_fp8_map(True, 5, 2, 8).to(x.device)
self.fw_code = bnb.functional.create_fp8_map(True, 4, 3, 8).to(x.device)
out = bnb.matmul_fp8(x, self.weight.t(), fw_code=self.fw_code, bw_code=self.bw_code, bsz=self.bsz)
out = bnb.matmul_fp8(x, self.weight.t(), fw_code=self.fw_code, bw_code=self.bw_code, bsz=self.bsz, bsz2=self.bsz2)
if self.bias is not None:
out += self.bias
return out
class LinearFP8Mixed(nn.Linear):
def __init__(self, input_features, output_features, bias=True):
super().__init__(input_features, output_features, bias)
self.bw_code = None
self.fw_code = None
array = [4096, 2048, 1024, 512, 256, 128, 64, 0]
for i, k in enumerate(array):
if input_features > array[i + 1]:
self.bsz = k
break
for i, k in enumerate(array):
if output_features > array[i + 1]:
self.bsz2 = k
break
def forward(self, x: torch.Tensor):
if self.fw_code is None:
self.bw_code = bnb.functional.create_fp8_map(True, 5, 2, 8).to(x.device)
self.fw_code = bnb.functional.create_fp8_map(True, 4, 3, 8).to(x.device)
out = bnb.matmul_fp8_mixed(x, self.weight.t(), fw_code=self.fw_code, bw_code=self.bw_code, bsz=self.bsz, bsz2=self.bsz2)
if self.bias is not None:
out += self.bias
return out
class LinearFP8Global(nn.Linear):
def __init__(self, input_features, output_features, bias=True):
super().__init__(input_features, output_features, bias)
self.bw_code = None
self.fw_code = None
array = [4096, 2048, 1024, 512, 256, 128, 64, 0]
for i, k in enumerate(array):
if input_features > array[i + 1]:
self.bsz = k
break
for i, k in enumerate(array):
if output_features > array[i + 1]:
self.bsz2 = k
break
def forward(self, x: torch.Tensor):
if self.fw_code is None:
self.bw_code = bnb.functional.create_fp8_map(True, 5, 2, 8).to(x.device)
self.fw_code = bnb.functional.create_fp8_map(True, 4, 3, 8).to(x.device)
out = bnb.matmul_fp8_global(x, self.weight.t(), fw_code=self.fw_code, bw_code=self.bw_code, bsz=self.bsz, bsz2=self.bsz2)
if self.bias is not None:
out += self.bias
@ -520,12 +575,16 @@ class LinearInt8(nn.Linear):
if input_features > array[i + 1]:
self.bsz = k
break
for i, k in enumerate(array):
if output_features > array[i + 1]:
self.bsz2 = k
break
def forward(self, x: torch.Tensor):
if self.code is None:
self.code = bnb.functional.create_linear_map(True, 8).to(x.device)
out = bnb.matmul_fp8(x, self.weight.t(), fw_code=self.code, bw_code=self.code, bsz=self.bsz)
out = bnb.matmul_fp8(x, self.weight.t(), fw_code=self.code, bw_code=self.code, bsz=self.bsz, bsz2=self.bsz2)
if self.bias is not None:
out += self.bias
@ -553,3 +612,30 @@ class LinearInt8Cast(nn.Linear):
return out
class LinearFP4(nn.Linear):
def __init__(self, input_features, output_features, bias=True):
super().__init__(input_features, output_features, bias)
self.bw_code = None
self.fw_code = None
array = [4096, 2048, 1024, 512, 256, 128, 64, 0]
for i, k in enumerate(array):
if input_features > array[i + 1]:
self.bsz = k
break
for i, k in enumerate(array):
if output_features > array[i + 1]:
self.bsz2 = k
break
def forward(self, x: torch.Tensor):
if self.fw_code is None:
#self.bw_code = bnb.functional.create_fp8_map(True, 3, 0, 4).to(x.device)
self.bw_code = bnb.functional.create_fp8_map(True, 5, 2, 8).to(x.device)
self.fw_code = bnb.functional.create_fp8_map(True, 3, 0, 4).to(x.device)
out = bnb.matmul_fp4(x, self.weight.t(), fw_code=self.fw_code, bw_code=self.bw_code, bsz=self.bsz, bsz2=self.bsz2)
if self.bias is not None:
out += self.bias
return out