Shared memory efficient 240.
This commit is contained in:
parent
89cccd8196
commit
77f15fdce9
|
@ -3041,7 +3041,7 @@ template <typename T, typename TCAST, int ITEMS> __device__ inline void vector_l
|
|||
}
|
||||
}
|
||||
|
||||
#define WARPS 6
|
||||
#define WARPS 5
|
||||
template <typename T, int BITS, int THREADS> __global__ void gemm_device(int M, int N, int K, T * __restrict__ const A, T* B, T * out, int lda, int ldb, int ldc)
|
||||
{
|
||||
|
||||
|
@ -3061,23 +3061,18 @@ template <typename T, int BITS, int THREADS> __global__ void gemm_device(int M,
|
|||
T local_A[1];
|
||||
T local_B[32];
|
||||
|
||||
const int a_tile_offset = (16 + 16);
|
||||
const int a_tile_offset = 16;
|
||||
const int b_tile_offset = (16*32 + 16);
|
||||
|
||||
__shared__ T smem_A[8*16 + (4*16*(batch_size_warps-1))];
|
||||
__shared__ T smem_A[8*16 + (2*16*(batch_size_warps-1))];
|
||||
__shared__ T smem_B[2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1))];
|
||||
__shared__ T smem_C[8*32];
|
||||
//__shared__ T smem_C[8*32];
|
||||
|
||||
wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
|
||||
wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
|
||||
wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
|
||||
|
||||
wmma::fill_fragment(c_frag, 0.0f);
|
||||
|
||||
for(int i = threadIdx.x; i < 8*32; i+=blockDim.x)
|
||||
smem_C[i] = T(0);
|
||||
__syncthreads();
|
||||
|
||||
int ticktock = 0;
|
||||
int idx = 0 + threadIdx.x;
|
||||
// prefetch
|
||||
|
@ -3155,63 +3150,24 @@ template <typename T, int BITS, int THREADS> __global__ void gemm_device(int M,
|
|||
}
|
||||
|
||||
__syncthreads();
|
||||
if(warp_id != (WARPS-1)){ return; }
|
||||
// only warp_id == (WARPS-1) from here
|
||||
int warp_lane = threadIdx.x % 32;
|
||||
|
||||
ticktock = ticktock == 0 ? 1 : 0;
|
||||
if(warp_id == (WARPS-1))
|
||||
for(int k = 0; k < batch_size_warps; k++)
|
||||
{
|
||||
wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); // 111 mu
|
||||
wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
|
||||
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
|
||||
}
|
||||
__syncthreads();
|
||||
for(int k = 0; k < batch_size_warps; k++)
|
||||
{
|
||||
wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); // 111 mu
|
||||
wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
|
||||
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
|
||||
}
|
||||
|
||||
// 129 mu
|
||||
if(warp_id == (WARPS-1))
|
||||
wmma::store_matrix_sync(&(smem_C[0]), c_frag, 32, wmma::mem_row_major);
|
||||
__syncthreads();
|
||||
wmma::store_matrix_sync(&(smem_A[0]), c_frag, 32, wmma::mem_row_major);
|
||||
|
||||
|
||||
//if(threadIdx.x >= 16){ return; }
|
||||
//printf("%i %f\n", threadIdx.x, (float)smem_C[threadIdx.x]);
|
||||
|
||||
//if(threadIdx.x < 32)
|
||||
//if(half_warp_lane < 8 && half_warp_id > 0)
|
||||
// //local_C[warp_lane] = smem_C[warp_lane + (warp_id*32*8)];
|
||||
// atomicAdd(&(smem_C[half_warp_lane]), smem_C[half_warp_lane + (half_warp_id*c_tile_offset)]);
|
||||
//__syncthreads();
|
||||
|
||||
//local_accC[row] = BlockReduce(temp_storage.reduce).Reduce(local_accC[row], cub::Sum());
|
||||
//if(threadIdx.x == 0)
|
||||
// for(int row = 0; row < 32; row++)
|
||||
// {
|
||||
// printf("row %i ", row);
|
||||
// for(int id = 0; id < 4; id++)
|
||||
// {
|
||||
// printf(" id %i: ", id);
|
||||
// for(int k = 0; k < 8; k++)
|
||||
// printf("%f ", (float)smem_C[k + (row*8) + (id*32*8)]);
|
||||
// printf("\n");
|
||||
// }
|
||||
// }
|
||||
|
||||
//__syncthreads();
|
||||
|
||||
//if((float)local_C[0] !=0.0f)
|
||||
// printf("%i %i %f\n", warp_lane, warp_id, (float)local_C[0]);
|
||||
//local_C[0] = WarpReduce(temp_storage).Sum(local_C[0]);
|
||||
|
||||
//__syncwarp();
|
||||
|
||||
////for(int i = threadIdx.x; i < 32*8; i+=blockDim.x)
|
||||
////{
|
||||
// if((float)local_C[0] !=0.0f)
|
||||
// printf("%i %f\n", 0, (float)local_C[0]);
|
||||
//}
|
||||
|
||||
//if(threadIdx.x < 8 && col_offset + threadIdx.x < M)
|
||||
//out[col_offset + threadIdx.x ] = smem_C[threadIdx.x];
|
||||
if(threadIdx.x < 32 && col_offset + threadIdx.x < M)
|
||||
out[col_offset + threadIdx.x] = smem_C[threadIdx.x];
|
||||
if(col_offset + warp_lane < M)
|
||||
out[col_offset + warp_lane] = smem_A[warp_lane];
|
||||
}
|
||||
|
||||
template <typename T, int THREADS> __global__ void kgemm_4bit_inference(int M, int N, int K, T * __restrict__ const A, unsigned char *B, float *absmax, T * out, int lda, int ldb, int ldc, int blocksize)
|
||||
|
@ -3496,6 +3452,7 @@ __global__ void with_staging_unified(float const* global_in, float * global_out,
|
|||
//template __global__ void gemm_device<float, 16, 128>(int M, int N, int K, float * __restrict__ const A, float* B, float * out, int lda, int ldb, int ldc);
|
||||
template __global__ void gemm_device<half, 32, 256>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
|
||||
template __global__ void gemm_device<half, 32, 192>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
|
||||
template __global__ void gemm_device<half, 32, 160>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
|
||||
template __global__ void gemm_device<half, 32, 128>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
|
||||
//template __global__ void gemm_device<float, 16, 32>(int M, int N, int K, float * __restrict__ const A, float* B, float * out, int lda, int ldb, int ldc);
|
||||
template __global__ void gemm_device<half, 32, 32>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
|
||||
|
@ -3506,6 +3463,7 @@ template __global__ void gemm_device<half, 32, 96>(int M, int N, int K, half * _
|
|||
//template __global__ void gemm_device<float, 32, 128>(int M, int N, int K, float * __restrict__ const A, float* B, float * out, int lda, int ldb, int ldc);
|
||||
template __global__ void gemm_device<half, 16, 256>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
|
||||
template __global__ void gemm_device<half, 16, 192>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
|
||||
template __global__ void gemm_device<half, 16, 160>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
|
||||
template __global__ void gemm_device<half, 16, 128>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
|
||||
//template __global__ void gemm_device<float, 32, 32>(int M, int N, int K, float * __restrict__ const A, float* B, float * out, int lda, int ldb, int ldc);
|
||||
template __global__ void gemm_device<half, 16, 32>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
|
||||
|
|
|
@ -693,7 +693,7 @@ template <typename T> void gemm_host(int m, int n, int k, T * A, T* B, T * out
|
|||
//gemm_device<T, 32, 32><<< num_blocks, 32, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
|
||||
if(bits == 16)
|
||||
//gemm_device<T, 16, 256><<< num_blocks, 256, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
|
||||
gemm_device<T, 16, 192><<< num_blocks, 192, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
|
||||
gemm_device<T, 16, 160><<< num_blocks, 160, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
|
||||
//gemm_device<T, 16, 128><<< num_blocks, 128, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
|
||||
//gemm_device<T, 16, 96><<< num_blocks, 96, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
|
||||
//gemm_device<T, 16, 32><<< num_blocks, 32, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
|
||||
|
|
|
@ -2358,9 +2358,9 @@ def test_normal_map_tree():
|
|||
#@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16'])
|
||||
@pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16'])
|
||||
def test_cutlass3_gemm(dtype):
|
||||
#for dim in [32, 64, 128, 256, 512, 1024, 2048, 4096]:
|
||||
for dim in [32, 64, 128, 256, 512, 1024, 2048, 4096]:
|
||||
#for dim in [4096, 5120, 6656, 8192]:
|
||||
for dim in [4096]:
|
||||
#for dim in [4096]:
|
||||
errs = []
|
||||
relerrs = []
|
||||
max_err = 0
|
||||
|
|
Loading…
Reference in New Issue
Block a user