Shared memory efficient 240.

This commit is contained in:
Tim Dettmers 2023-05-02 11:38:11 -07:00
parent 89cccd8196
commit 77f15fdce9
3 changed files with 22 additions and 64 deletions

View File

@ -3041,7 +3041,7 @@ template <typename T, typename TCAST, int ITEMS> __device__ inline void vector_l
}
}
#define WARPS 6
#define WARPS 5
template <typename T, int BITS, int THREADS> __global__ void gemm_device(int M, int N, int K, T * __restrict__ const A, T* B, T * out, int lda, int ldb, int ldc)
{
@ -3061,23 +3061,18 @@ template <typename T, int BITS, int THREADS> __global__ void gemm_device(int M,
T local_A[1];
T local_B[32];
const int a_tile_offset = (16 + 16);
const int a_tile_offset = 16;
const int b_tile_offset = (16*32 + 16);
__shared__ T smem_A[8*16 + (4*16*(batch_size_warps-1))];
__shared__ T smem_A[8*16 + (2*16*(batch_size_warps-1))];
__shared__ T smem_B[2*batch_size_warps*16*32 + (2*16*(batch_size_warps-1))];
__shared__ T smem_C[8*32];
//__shared__ T smem_C[8*32];
wmma::fragment<wmma::matrix_a, 8, 32, 16, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, 8, 32, 16, half, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, 8, 32, 16, half> c_frag;
wmma::fill_fragment(c_frag, 0.0f);
for(int i = threadIdx.x; i < 8*32; i+=blockDim.x)
smem_C[i] = T(0);
__syncthreads();
int ticktock = 0;
int idx = 0 + threadIdx.x;
// prefetch
@ -3155,63 +3150,24 @@ template <typename T, int BITS, int THREADS> __global__ void gemm_device(int M,
}
__syncthreads();
if(warp_id != (WARPS-1)){ return; }
// only warp_id == (WARPS-1) from here
int warp_lane = threadIdx.x % 32;
ticktock = ticktock == 0 ? 1 : 0;
if(warp_id == (WARPS-1))
for(int k = 0; k < batch_size_warps; k++)
{
wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); // 111 mu
wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
}
__syncthreads();
for(int k = 0; k < batch_size_warps; k++)
{
wmma::load_matrix_sync(a_frag, &(smem_A[(ticktock*batch_size_warps + k)*a_tile_offset]), 16); // 111 mu
wmma::load_matrix_sync(b_frag, &(smem_B[(ticktock*batch_size_warps + k)*b_tile_offset]), 16); // 35 mu
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
}
// 129 mu
if(warp_id == (WARPS-1))
wmma::store_matrix_sync(&(smem_C[0]), c_frag, 32, wmma::mem_row_major);
__syncthreads();
wmma::store_matrix_sync(&(smem_A[0]), c_frag, 32, wmma::mem_row_major);
//if(threadIdx.x >= 16){ return; }
//printf("%i %f\n", threadIdx.x, (float)smem_C[threadIdx.x]);
//if(threadIdx.x < 32)
//if(half_warp_lane < 8 && half_warp_id > 0)
// //local_C[warp_lane] = smem_C[warp_lane + (warp_id*32*8)];
// atomicAdd(&(smem_C[half_warp_lane]), smem_C[half_warp_lane + (half_warp_id*c_tile_offset)]);
//__syncthreads();
//local_accC[row] = BlockReduce(temp_storage.reduce).Reduce(local_accC[row], cub::Sum());
//if(threadIdx.x == 0)
// for(int row = 0; row < 32; row++)
// {
// printf("row %i ", row);
// for(int id = 0; id < 4; id++)
// {
// printf(" id %i: ", id);
// for(int k = 0; k < 8; k++)
// printf("%f ", (float)smem_C[k + (row*8) + (id*32*8)]);
// printf("\n");
// }
// }
//__syncthreads();
//if((float)local_C[0] !=0.0f)
// printf("%i %i %f\n", warp_lane, warp_id, (float)local_C[0]);
//local_C[0] = WarpReduce(temp_storage).Sum(local_C[0]);
//__syncwarp();
////for(int i = threadIdx.x; i < 32*8; i+=blockDim.x)
////{
// if((float)local_C[0] !=0.0f)
// printf("%i %f\n", 0, (float)local_C[0]);
//}
//if(threadIdx.x < 8 && col_offset + threadIdx.x < M)
//out[col_offset + threadIdx.x ] = smem_C[threadIdx.x];
if(threadIdx.x < 32 && col_offset + threadIdx.x < M)
out[col_offset + threadIdx.x] = smem_C[threadIdx.x];
if(col_offset + warp_lane < M)
out[col_offset + warp_lane] = smem_A[warp_lane];
}
template <typename T, int THREADS> __global__ void kgemm_4bit_inference(int M, int N, int K, T * __restrict__ const A, unsigned char *B, float *absmax, T * out, int lda, int ldb, int ldc, int blocksize)
@ -3496,6 +3452,7 @@ __global__ void with_staging_unified(float const* global_in, float * global_out,
//template __global__ void gemm_device<float, 16, 128>(int M, int N, int K, float * __restrict__ const A, float* B, float * out, int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 256>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 192>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 160>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 128>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
//template __global__ void gemm_device<float, 16, 32>(int M, int N, int K, float * __restrict__ const A, float* B, float * out, int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 32, 32>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
@ -3506,6 +3463,7 @@ template __global__ void gemm_device<half, 32, 96>(int M, int N, int K, half * _
//template __global__ void gemm_device<float, 32, 128>(int M, int N, int K, float * __restrict__ const A, float* B, float * out, int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 256>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 192>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 160>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 128>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);
//template __global__ void gemm_device<float, 32, 32>(int M, int N, int K, float * __restrict__ const A, float* B, float * out, int lda, int ldb, int ldc);
template __global__ void gemm_device<half, 16, 32>(int M, int N, int K, half * __restrict__ const A, half* B, half * out, int lda, int ldb, int ldc);

View File

@ -693,7 +693,7 @@ template <typename T> void gemm_host(int m, int n, int k, T * A, T* B, T * out
//gemm_device<T, 32, 32><<< num_blocks, 32, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
if(bits == 16)
//gemm_device<T, 16, 256><<< num_blocks, 256, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
gemm_device<T, 16, 192><<< num_blocks, 192, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
gemm_device<T, 16, 160><<< num_blocks, 160, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
//gemm_device<T, 16, 128><<< num_blocks, 128, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
//gemm_device<T, 16, 96><<< num_blocks, 96, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);
//gemm_device<T, 16, 32><<< num_blocks, 32, 0, 0 >>>(m, n, k, A, B, out, lda, ldb, ldc);

View File

@ -2358,9 +2358,9 @@ def test_normal_map_tree():
#@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['fp32', 'fp16'])
@pytest.mark.parametrize("dtype", [torch.float16], ids=['fp16'])
def test_cutlass3_gemm(dtype):
#for dim in [32, 64, 128, 256, 512, 1024, 2048, 4096]:
for dim in [32, 64, 128, 256, 512, 1024, 2048, 4096]:
#for dim in [4096, 5120, 6656, 8192]:
for dim in [4096]:
#for dim in [4096]:
errs = []
relerrs = []
max_err = 0