Fixed cpu blockwise quantization for small input tensors.
This commit is contained in:
parent
d8dbf3a9b5
commit
c05dd42ddd
|
@ -30,11 +30,12 @@ void quantize_cpu(float *code, float *A, float *absmax, unsigned char *out, long
|
|||
// between 16k and 64k on Linux (we reach this when running BLOOM-176B with a large batch size)
|
||||
for(long long offset = 0; offset < num_blocks; offset+=thread_wave_size)
|
||||
{
|
||||
pthread_t *threads = (pthread_t *) malloc(sizeof(pthread_t) * thread_wave_size);
|
||||
long long valid_chunks = num_blocks - offset >= thread_wave_size ? thread_wave_size : num_blocks - offset;
|
||||
pthread_t *threads = (pthread_t *) malloc(sizeof(pthread_t) * valid_chunks);
|
||||
|
||||
struct quantize_block_args **args = (quantize_block_args **) malloc(thread_wave_size * sizeof(quantize_block_args *));
|
||||
struct quantize_block_args **args = (quantize_block_args **) malloc(valid_chunks * sizeof(quantize_block_args *));
|
||||
|
||||
for(long long i = 0; i < thread_wave_size; i++)
|
||||
for(long long i = 0; i < valid_chunks; i++)
|
||||
args[i] = (quantize_block_args *) malloc(sizeof(quantize_block_args));
|
||||
|
||||
int chunks_processed = 0;
|
||||
|
@ -56,14 +57,14 @@ void quantize_cpu(float *code, float *A, float *absmax, unsigned char *out, long
|
|||
|
||||
pthread_create(&threads[chunks_processed], NULL, &quantize_block, (void *) arg);
|
||||
chunks_processed += 1;
|
||||
if(chunks_processed == thread_wave_size){ break; }
|
||||
if(chunks_processed == valid_chunks){ break; }
|
||||
}
|
||||
|
||||
for (int i = 0; i < thread_wave_size; i++)
|
||||
for (int i = 0; i < valid_chunks; i++)
|
||||
int err = pthread_join(threads[i], NULL);
|
||||
|
||||
free(threads);
|
||||
for (int i = 0; i < thread_wave_size; i++)
|
||||
for (int i = 0; i < valid_chunks; i++)
|
||||
free(args[i]);
|
||||
free(args);
|
||||
|
||||
|
|
|
@ -2133,18 +2133,18 @@ def test_blockwise_cpu_large():
|
|||
reldiffs = []
|
||||
batch = 128
|
||||
seq = 128
|
||||
hidden = 14336
|
||||
for blocksize in [4096, 16384]:
|
||||
for i in range(2):
|
||||
A1 = torch.randn(batch, seq, hidden, device='cpu')
|
||||
t0 = time.time()
|
||||
C, S = F.quantize_blockwise(A1, blocksize=blocksize)
|
||||
A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
|
||||
print(time.time() - t0)
|
||||
diff = torch.abs(A1 - A2)
|
||||
reldiff = diff / torch.abs(A1 + 1e-8)
|
||||
diffs.append(diff.mean().item())
|
||||
reldiffs.append(reldiff.mean().item())
|
||||
assert diffs[-1] < 0.011
|
||||
# print(sum(diffs)/len(diffs))
|
||||
# print(sum(reldiffs)/len(reldiffs))
|
||||
for hidden in [128, 14336]:
|
||||
for blocksize in [4096, 16384]:
|
||||
for i in range(2):
|
||||
A1 = torch.randn(batch, seq, hidden, device='cpu')
|
||||
t0 = time.time()
|
||||
C, S = F.quantize_blockwise(A1, blocksize=blocksize)
|
||||
A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
|
||||
print(time.time() - t0)
|
||||
diff = torch.abs(A1 - A2)
|
||||
reldiff = diff / torch.abs(A1 + 1e-8)
|
||||
diffs.append(diff.mean().item())
|
||||
reldiffs.append(reldiff.mean().item())
|
||||
assert diffs[-1] < 0.011
|
||||
# print(sum(diffs)/len(diffs))
|
||||
# print(sum(reldiffs)/len(reldiffs))
|
||||
|
|
Loading…
Reference in New Issue
Block a user