Merge branch 'main' into patch-1
This commit is contained in:
commit
c52365ac1d
12
CHANGELOG.md
12
CHANGELOG.md
|
@ -189,3 +189,15 @@ Improvements:
|
||||||
- StableEmbedding layer now has device and dtype parameters to make it 1:1 replaceable with regular Embedding layers (@lostmsu)
|
- StableEmbedding layer now has device and dtype parameters to make it 1:1 replaceable with regular Embedding layers (@lostmsu)
|
||||||
- runtime performance of block-wise quantization slightly improved
|
- runtime performance of block-wise quantization slightly improved
|
||||||
- added error message for the case multiple libcudart.so are installed and bitsandbytes picks the wrong one
|
- added error message for the case multiple libcudart.so are installed and bitsandbytes picks the wrong one
|
||||||
|
|
||||||
|
|
||||||
|
### 0.37.0
|
||||||
|
|
||||||
|
#### Int8 Matmul + backward support for all GPUs
|
||||||
|
|
||||||
|
Features:
|
||||||
|
- Int8 MatmulLt now supports backward through inversion of the ColTuring/ColAmpere format. Slow, but memory efficient. Big thanks to @borzunov
|
||||||
|
- Int8 now supported on all GPUs. On devices with compute capability < 7.5, the Int weights are cast to 16/32-bit for the matrix multiplication. Contributed by @borzunov
|
||||||
|
|
||||||
|
Improvements:
|
||||||
|
- Improved logging for the CUDA detection mechanism.
|
||||||
|
|
4
Makefile
4
Makefile
|
@ -60,8 +60,8 @@ CC_ADA_HOPPER += -gencode arch=compute_90,code=sm_90
|
||||||
|
|
||||||
|
|
||||||
all: $(ROOT_DIR)/dependencies/cub $(BUILD_DIR) env
|
all: $(ROOT_DIR)/dependencies/cub $(BUILD_DIR) env
|
||||||
$(NVCC) $(COMPUTE_CAPABILITY) $(CC_KEPLER) -Xcompiler '-fPIC' --use_fast_math -Xptxas=-v -dc $(FILES_CUDA) $(INCLUDE) $(LIB) --output-directory $(BUILD_DIR)
|
$(NVCC) $(CC_CUDA10x) -Xcompiler '-fPIC' --use_fast_math -Xptxas=-v -dc $(FILES_CUDA) $(INCLUDE) $(LIB) --output-directory $(BUILD_DIR)
|
||||||
$(NVCC) $(COMPUTE_CAPABILITY) $(CC_KEPLER) -Xcompiler '-fPIC' -dlink $(BUILD_DIR)/ops.o $(BUILD_DIR)/kernels.o -o $(BUILD_DIR)/link.o
|
$(NVCC) $(CC_CUDA10x) -Xcompiler '-fPIC' -dlink $(BUILD_DIR)/ops.o $(BUILD_DIR)/kernels.o -o $(BUILD_DIR)/link.o
|
||||||
$(GPP) -std=c++14 -DBUILD_CUDA -shared -fPIC $(INCLUDE) $(BUILD_DIR)/ops.o $(BUILD_DIR)/kernels.o $(BUILD_DIR)/link.o $(FILES_CPP) -o ./bitsandbytes/libbitsandbytes_cuda$(CUDA_VERSION).so $(LIB)
|
$(GPP) -std=c++14 -DBUILD_CUDA -shared -fPIC $(INCLUDE) $(BUILD_DIR)/ops.o $(BUILD_DIR)/kernels.o $(BUILD_DIR)/link.o $(FILES_CPP) -o ./bitsandbytes/libbitsandbytes_cuda$(CUDA_VERSION).so $(LIB)
|
||||||
|
|
||||||
cuda92: $(ROOT_DIR)/dependencies/cub $(BUILD_DIR) env
|
cuda92: $(ROOT_DIR)/dependencies/cub $(BUILD_DIR) env
|
||||||
|
|
|
@ -12,6 +12,7 @@ Resources:
|
||||||
## TL;DR
|
## TL;DR
|
||||||
**Requirements**
|
**Requirements**
|
||||||
Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0. LLM.int8() requires Turing or Ampere GPUs.
|
Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0. LLM.int8() requires Turing or Ampere GPUs.
|
||||||
|
|
||||||
**Installation**:
|
**Installation**:
|
||||||
``pip install bitsandbytes``
|
``pip install bitsandbytes``
|
||||||
|
|
||||||
|
@ -58,6 +59,10 @@ The bitsandbytes library is currently only supported on Linux distributions. Win
|
||||||
|
|
||||||
The requirements can best be fulfilled by installing pytorch via anaconda. You can install PyTorch by following the ["Get Started"](https://pytorch.org/get-started/locally/) instructions on the official website.
|
The requirements can best be fulfilled by installing pytorch via anaconda. You can install PyTorch by following the ["Get Started"](https://pytorch.org/get-started/locally/) instructions on the official website.
|
||||||
|
|
||||||
|
To install run:
|
||||||
|
|
||||||
|
``pip install bitsandbytes``
|
||||||
|
|
||||||
## Using bitsandbytes
|
## Using bitsandbytes
|
||||||
|
|
||||||
### Using Int8 Matrix Multiplication
|
### Using Int8 Matrix Multiplication
|
||||||
|
|
|
@ -0,0 +1 @@
|
||||||
|
from ._functions import undo_layout, get_inverse_transform_indices
|
|
@ -2,6 +2,7 @@ import operator
|
||||||
import warnings
|
import warnings
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from functools import reduce # Required in Python 3
|
from functools import reduce # Required in Python 3
|
||||||
|
from typing import Tuple, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
@ -14,6 +15,12 @@ def prod(iterable):
|
||||||
|
|
||||||
tensor = torch.Tensor
|
tensor = torch.Tensor
|
||||||
|
|
||||||
|
|
||||||
|
# The inverse transformation for the colTuring and colAmpere format were contributed by Alex Borzunov:
|
||||||
|
# https://github.com/bigscience-workshop/petals/blob/main/src/petals/utils/linear8bitlt_patch.py
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
This class pools outlier dimensions across layers.
|
This class pools outlier dimensions across layers.
|
||||||
This is particularly important for small models where outlier features
|
This is particularly important for small models where outlier features
|
||||||
|
@ -48,6 +55,51 @@ class GlobalOutlierPooler:
|
||||||
return torch.Tensor(list(self.outliers)).to(torch.int64)
|
return torch.Tensor(list(self.outliers)).to(torch.int64)
|
||||||
|
|
||||||
|
|
||||||
|
def get_inverse_transform_indices(transform_tile: callable, tile_size: Tuple[int, int]):
|
||||||
|
"""
|
||||||
|
Compute a permutation of indices that invert the specified (tiled) matrix transformation
|
||||||
|
|
||||||
|
:param transform_tile: a function that applies forward transform to a tensor of shape [dim1, dim2]
|
||||||
|
:param tile_size: higher-level tile dimensions, i.e. (8, 32) for Turing and (32, 32) for Ampere
|
||||||
|
:note: we assume that tile_transform applies to a cpu-based int8 tensor of shape tile_size
|
||||||
|
:example: transform_tile function for the turing layout (bitsandbytes.functional as F)
|
||||||
|
:returns: indices
|
||||||
|
"""
|
||||||
|
d1, d2 = tile_size
|
||||||
|
assert 0 < d1 * d2 < 2**64
|
||||||
|
tile_indices = torch.arange(d1 * d2, dtype=torch.int64).view(d1, d2)
|
||||||
|
# encode each position in tile as a tuple of <= 8 unique bytes
|
||||||
|
permuted_tile_indices = torch.zeros_like(tile_indices)
|
||||||
|
for i in range(8):
|
||||||
|
# select i-th byte, apply transformation and trace where each index ended up
|
||||||
|
ith_dim_indices = torch.div(tile_indices, 256**i, rounding_mode="trunc") % 256
|
||||||
|
sample_tile_i = (ith_dim_indices - 128).to(torch.int8).contiguous()
|
||||||
|
assert torch.all(sample_tile_i.int() + 128 == ith_dim_indices), "int overflow"
|
||||||
|
permuted_tile_i = transform_tile(sample_tile_i)
|
||||||
|
ith_permuted_indices = permuted_tile_i.to(tile_indices.dtype) + 128
|
||||||
|
permuted_tile_indices += ith_permuted_indices * (256**i)
|
||||||
|
if d1 * d2 < 256**i:
|
||||||
|
break # if all indices fit in i bytes, stop early
|
||||||
|
return permuted_tile_indices
|
||||||
|
|
||||||
|
def undo_layout(permuted_tensor: torch.Tensor, tile_indices: torch.LongTensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Undo a tiled permutation such as turing or ampere layout
|
||||||
|
|
||||||
|
:param permuted_tensor: torch tensor in a permuted layout
|
||||||
|
:param tile_indices: reverse transformation indices, from get_inverse_transform_indices
|
||||||
|
:return: contiguous row-major tensor
|
||||||
|
"""
|
||||||
|
(rows, cols), (tile_rows, tile_cols) = permuted_tensor.shape, tile_indices.shape
|
||||||
|
assert rows % tile_rows == cols % tile_cols == 0, "tensor must contain a whole number of tiles"
|
||||||
|
tensor = permuted_tensor.reshape(-1, tile_indices.numel()).t()
|
||||||
|
outputs = torch.empty_like(tensor) # note: not using .index_copy because it was slower on cuda
|
||||||
|
outputs[tile_indices.flatten()] = tensor
|
||||||
|
outputs = outputs.reshape(tile_rows, tile_cols, cols // tile_cols, rows // tile_rows)
|
||||||
|
outputs = outputs.permute(3, 0, 2, 1) # (rows // tile_rows, tile_rows), (cols // tile_cols, tile_cols)
|
||||||
|
return outputs.reshape(rows, cols).contiguous()
|
||||||
|
|
||||||
|
|
||||||
class MatMul8bit(torch.autograd.Function):
|
class MatMul8bit(torch.autograd.Function):
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def forward(ctx, A, B, out=None, quant_type="vector", precision=None):
|
def forward(ctx, A, B, out=None, quant_type="vector", precision=None):
|
||||||
|
@ -171,6 +223,8 @@ matmul_cublas = MatMul8bit.apply
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class MatmulLtState:
|
class MatmulLtState:
|
||||||
|
tile_indices: Optional[torch.Tensor] = None
|
||||||
|
force_no_igemmlt: bool = False
|
||||||
CB = None
|
CB = None
|
||||||
CxB = None
|
CxB = None
|
||||||
SB = None
|
SB = None
|
||||||
|
@ -202,11 +256,22 @@ class MatmulLtState:
|
||||||
self.SBt = None
|
self.SBt = None
|
||||||
self.CBt = None
|
self.CBt = None
|
||||||
|
|
||||||
|
def get_tile_size(self):
|
||||||
|
assert self.formatB in (
|
||||||
|
"col_turing",
|
||||||
|
"col_ampere",
|
||||||
|
), f"please find this assert and manually enter tile size for {self.formatB}"
|
||||||
|
return (8, 32) if self.formatB == "col_turing" else (32, 32)
|
||||||
|
|
||||||
|
|
||||||
class MatMul8bitLt(torch.autograd.Function):
|
class MatMul8bitLt(torch.autograd.Function):
|
||||||
|
# forward is the same, but we added the fallback for pre-turing GPUs
|
||||||
|
# backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None")
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()):
|
def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState):
|
||||||
# default to pytorch behavior if inputs are empty
|
using_igemmlt = torch.cuda.get_device_capability(device=A.device) >= (7, 5) and not state.force_no_igemmlt
|
||||||
|
# default of pytorch behavior if inputs are empty
|
||||||
ctx.is_empty = False
|
ctx.is_empty = False
|
||||||
if prod(A.shape) == 0:
|
if prod(A.shape) == 0:
|
||||||
ctx.is_empty = True
|
ctx.is_empty = True
|
||||||
|
@ -214,9 +279,9 @@ class MatMul8bitLt(torch.autograd.Function):
|
||||||
ctx.B = B
|
ctx.B = B
|
||||||
ctx.bias = bias
|
ctx.bias = bias
|
||||||
if A.shape[-1] == B.shape[0]:
|
if A.shape[-1] == B.shape[0]:
|
||||||
return torch.empty(A.shape[:-1]+B.shape[1:], dtype=A.dtype, device=A.device)
|
return torch.empty(A.shape[:-1] + B.shape[1:], dtype=A.dtype, device=A.device)
|
||||||
else:
|
else:
|
||||||
return torch.empty(A.shape[:-1]+B.shape[:1], dtype=A.dtype, device=A.device)
|
return torch.empty(A.shape[:-1] + B.shape[:1], dtype=A.dtype, device=A.device)
|
||||||
|
|
||||||
# 1. Quantize A
|
# 1. Quantize A
|
||||||
# 2. Quantize B
|
# 2. Quantize B
|
||||||
|
@ -235,9 +300,7 @@ class MatMul8bitLt(torch.autograd.Function):
|
||||||
# 1. Quantize A
|
# 1. Quantize A
|
||||||
if len(A.shape) == 3:
|
if len(A.shape) == 3:
|
||||||
A = A.view(-1, A.shape[-1]).contiguous()
|
A = A.view(-1, A.shape[-1]).contiguous()
|
||||||
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(
|
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A.to(torch.float16), threshold=state.threshold)
|
||||||
A.to(torch.float16), threshold=state.threshold
|
|
||||||
)
|
|
||||||
|
|
||||||
if state.threshold > 0.0 and coo_tensorA is not None:
|
if state.threshold > 0.0 and coo_tensorA is not None:
|
||||||
if state.has_fp16_weights:
|
if state.has_fp16_weights:
|
||||||
|
@ -248,12 +311,12 @@ class MatMul8bitLt(torch.autograd.Function):
|
||||||
state.subB = B[:, idx].t().contiguous()
|
state.subB = B[:, idx].t().contiguous()
|
||||||
state.idx = idx
|
state.idx = idx
|
||||||
else:
|
else:
|
||||||
if state.CxB is None:
|
if state.CxB is None and using_igemmlt:
|
||||||
# B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
|
# B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
|
||||||
# we also need to convert it to the turing/ampere format
|
# we also need to convert it to the turing/ampere format
|
||||||
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
|
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
|
||||||
else:
|
else:
|
||||||
if not state.has_fp16_weights and state.CxB is None:
|
if not state.has_fp16_weights and state.CxB is None and using_igemmlt:
|
||||||
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
|
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
|
||||||
subA = None
|
subA = None
|
||||||
|
|
||||||
|
@ -273,7 +336,10 @@ class MatMul8bitLt(torch.autograd.Function):
|
||||||
state.SCBt,
|
state.SCBt,
|
||||||
coo_tensorB,
|
coo_tensorB,
|
||||||
) = F.double_quant(B.to(torch.float16))
|
) = F.double_quant(B.to(torch.float16))
|
||||||
state.CxB, state.SB = F.transform(CB, to_order=formatB)
|
if using_igemmlt:
|
||||||
|
state.CxB, state.SB = F.transform(CB, to_order=formatB)
|
||||||
|
else:
|
||||||
|
state.CB = CB
|
||||||
else:
|
else:
|
||||||
has_grad = False
|
has_grad = False
|
||||||
|
|
||||||
|
@ -288,18 +354,17 @@ class MatMul8bitLt(torch.autograd.Function):
|
||||||
# state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
|
# state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
|
||||||
# else:
|
# else:
|
||||||
# state.idx = outlier_idx
|
# state.idx = outlier_idx
|
||||||
outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
|
if state.CxB is not None:
|
||||||
state.subB = (
|
outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
|
||||||
(outliers * state.SCB.view(-1, 1) / 127.0)
|
else:
|
||||||
.t()
|
outliers = state.CB[:, state.idx.long()].clone()
|
||||||
.contiguous()
|
|
||||||
.to(A.dtype)
|
state.subB = (outliers * state.SCB.view(-1, 1) / 127.0).t().contiguous().to(A.dtype)
|
||||||
)
|
|
||||||
CA[:, state.idx.long()] = 0
|
CA[:, state.idx.long()] = 0
|
||||||
CAt[:, state.idx.long()] = 0
|
CAt[:, state.idx.long()] = 0
|
||||||
subA = A[:, state.idx.long()]
|
subA = A[:, state.idx.long()]
|
||||||
|
|
||||||
shapeB = state.SB[0]
|
shapeB = state.SB[0] if state.SB else B.shape
|
||||||
|
|
||||||
if len(input_shape) == 3:
|
if len(input_shape) == 3:
|
||||||
output_shape = (input_shape[0], input_shape[1], shapeB[0])
|
output_shape = (input_shape[0], input_shape[1], shapeB[0])
|
||||||
|
@ -307,16 +372,25 @@ class MatMul8bitLt(torch.autograd.Function):
|
||||||
output_shape = (input_shape[0], shapeB[0])
|
output_shape = (input_shape[0], shapeB[0])
|
||||||
|
|
||||||
# 3. Matmul
|
# 3. Matmul
|
||||||
C32A, SA = F.transform(CA, "col32")
|
if using_igemmlt:
|
||||||
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
|
C32A, SA = F.transform(CA, "col32")
|
||||||
# we apply the fused bias here
|
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
|
||||||
|
if bias is None or bias.dtype == torch.float16:
|
||||||
|
# we apply the fused bias here
|
||||||
|
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
|
||||||
|
output = output.to(A.dtype)
|
||||||
|
else: # apply bias separately
|
||||||
|
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None)
|
||||||
|
output = output.to(A.dtype).add_(bias)
|
||||||
|
|
||||||
if bias is None or bias.dtype == torch.float16:
|
else:
|
||||||
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
|
A_wo_outliers = A.clone()
|
||||||
output = output.to(A.dtype)
|
if state.idx is not None:
|
||||||
else: # apply bias separately
|
A_wo_outliers[:, state.idx.long()] = 0
|
||||||
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None)
|
output = torch.nn.functional.linear(A_wo_outliers, state.CB.to(A.dtype))
|
||||||
output = output.to(A.dtype).add_(bias)
|
output = output.mul_(state.SCB.unsqueeze(0).mul(1.0 / 127.0))
|
||||||
|
if bias is not None:
|
||||||
|
output = output.add_(bias)
|
||||||
|
|
||||||
# 4. Mixed-precision decomposition matmul
|
# 4. Mixed-precision decomposition matmul
|
||||||
if coo_tensorA is not None and subA is not None:
|
if coo_tensorA is not None and subA is not None:
|
||||||
|
@ -337,14 +411,13 @@ class MatMul8bitLt(torch.autograd.Function):
|
||||||
ctx.tensor_states = (None, None)
|
ctx.tensor_states = (None, None)
|
||||||
ctx.save_for_backward(None, None)
|
ctx.save_for_backward(None, None)
|
||||||
|
|
||||||
|
clone_func = torch.clone if len(output_shape) == 3 else lambda x: x
|
||||||
clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
|
|
||||||
return clone_func(output.view(output_shape))
|
return clone_func(output.view(output_shape))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def backward(ctx, grad_output):
|
def backward(ctx, grad_output):
|
||||||
if ctx.is_empty:
|
if ctx.is_empty:
|
||||||
bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias))
|
bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias)
|
||||||
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
|
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
|
||||||
req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad
|
req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad
|
||||||
CAt, subA = ctx.tensors
|
CAt, subA = ctx.tensors
|
||||||
|
@ -359,9 +432,7 @@ class MatMul8bitLt(torch.autograd.Function):
|
||||||
|
|
||||||
# Cast grad_output to fp16
|
# Cast grad_output to fp16
|
||||||
if len(grad_output.shape) == 3:
|
if len(grad_output.shape) == 3:
|
||||||
grad_output = grad_output.reshape(
|
grad_output = grad_output.reshape(-1, grad_output.shape[-1]).contiguous()
|
||||||
-1, grad_output.shape[-1]
|
|
||||||
).contiguous()
|
|
||||||
|
|
||||||
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16))
|
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16))
|
||||||
if req_gradB:
|
if req_gradB:
|
||||||
|
@ -376,17 +447,29 @@ class MatMul8bitLt(torch.autograd.Function):
|
||||||
if state.CBt is not None:
|
if state.CBt is not None:
|
||||||
C32grad, Sgrad = F.transform(Cgrad, "col32")
|
C32grad, Sgrad = F.transform(Cgrad, "col32")
|
||||||
if state.CxBt is None:
|
if state.CxBt is None:
|
||||||
state.CxBt, state.SBt = F.transform(
|
state.CxBt, state.SBt = F.transform(state.CBt, to_order=formatB, transpose=True)
|
||||||
state.CBt, to_order=formatB, transpose=True
|
|
||||||
)
|
|
||||||
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
|
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
|
||||||
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A)
|
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A)
|
||||||
|
|
||||||
elif state.CB is not None:
|
elif state.CB is not None:
|
||||||
CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1. / 127.0))
|
CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1.0 / 127.0))
|
||||||
|
grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A)
|
||||||
|
elif state.CxB is not None:
|
||||||
|
|
||||||
|
if state.tile_indices is None:
|
||||||
|
order, tile_size = state.formatB, state.get_tile_size()
|
||||||
|
transform = lambda x: F.transform(x.cuda(), from_order="row", to_order=order)[0].to(x.device)
|
||||||
|
with torch.no_grad():
|
||||||
|
state.tile_indices = get_inverse_transform_indices(transform, tile_size).to(state.CxB.device)
|
||||||
|
|
||||||
|
CB = (
|
||||||
|
undo_layout(state.CxB, state.tile_indices)
|
||||||
|
.to(ctx.dtype_A)
|
||||||
|
.mul_(state.SCB.unsqueeze(1).mul(1.0 / 127.0))
|
||||||
|
)
|
||||||
grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A)
|
grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A)
|
||||||
else:
|
else:
|
||||||
raise Exception('State must contain either CBt or CB matrix for backward')
|
raise Exception("State must contain either CBt or CB or CxB matrix for backward")
|
||||||
|
|
||||||
return grad_A, grad_B, None, grad_bias, None
|
return grad_A, grad_B, None, grad_bias, None
|
||||||
|
|
||||||
|
|
|
@ -80,9 +80,10 @@ class CUDASetup:
|
||||||
self.add_log_entry('python setup.py install')
|
self.add_log_entry('python setup.py install')
|
||||||
|
|
||||||
def initialize(self):
|
def initialize(self):
|
||||||
self.has_printed = False
|
if not getattr(self, 'initialized', False):
|
||||||
self.lib = None
|
self.has_printed = False
|
||||||
self.initialized = False
|
self.lib = None
|
||||||
|
self.initialized = False
|
||||||
|
|
||||||
def run_cuda_setup(self):
|
def run_cuda_setup(self):
|
||||||
self.initialized = True
|
self.initialized = True
|
||||||
|
@ -103,7 +104,7 @@ class CUDASetup:
|
||||||
legacy_binary_name = "libbitsandbytes_cpu.so"
|
legacy_binary_name = "libbitsandbytes_cpu.so"
|
||||||
self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
|
self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
|
||||||
binary_path = package_dir / legacy_binary_name
|
binary_path = package_dir / legacy_binary_name
|
||||||
if not binary_path.exists():
|
if not binary_path.exists() or torch.cuda.is_available():
|
||||||
self.add_log_entry('')
|
self.add_log_entry('')
|
||||||
self.add_log_entry('='*48 + 'ERROR' + '='*37)
|
self.add_log_entry('='*48 + 'ERROR' + '='*37)
|
||||||
self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:')
|
self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:')
|
||||||
|
@ -112,6 +113,7 @@ class CUDASetup:
|
||||||
self.add_log_entry('3. You have multiple conflicting CUDA libraries')
|
self.add_log_entry('3. You have multiple conflicting CUDA libraries')
|
||||||
self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!')
|
self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!')
|
||||||
self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
|
self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
|
||||||
|
self.add_log_entry('CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via `conda list | grep cuda`.')
|
||||||
self.add_log_entry('='*80)
|
self.add_log_entry('='*80)
|
||||||
self.add_log_entry('')
|
self.add_log_entry('')
|
||||||
self.generate_instructions()
|
self.generate_instructions()
|
||||||
|
@ -148,7 +150,7 @@ def is_cublasLt_compatible(cc):
|
||||||
if cc is not None:
|
if cc is not None:
|
||||||
cc_major, cc_minor = cc.split('.')
|
cc_major, cc_minor = cc.split('.')
|
||||||
if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
|
if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5):
|
||||||
CUDASetup.get_instance().add_log_entry("WARNING: Compute capability < 7.5 detected! Proceeding to load CPU-only library...", is_warning=True)
|
CUDASetup.get_instance().add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True)
|
||||||
else:
|
else:
|
||||||
has_cublaslt = True
|
has_cublaslt = True
|
||||||
return has_cublaslt
|
return has_cublaslt
|
||||||
|
@ -362,7 +364,6 @@ def evaluate_cuda_setup():
|
||||||
print('')
|
print('')
|
||||||
print('='*35 + 'BUG REPORT' + '='*35)
|
print('='*35 + 'BUG REPORT' + '='*35)
|
||||||
print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
|
print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
|
||||||
print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
|
|
||||||
print('='*80)
|
print('='*80)
|
||||||
if not torch.cuda.is_available(): return 'libsbitsandbytes_cpu.so', None, None, None, None
|
if not torch.cuda.is_available(): return 'libsbitsandbytes_cpu.so', None, None, None, None
|
||||||
|
|
||||||
|
|
|
@ -209,19 +209,10 @@ class Int8Params(torch.nn.Parameter):
|
||||||
|
|
||||||
|
|
||||||
class Linear8bitLt(nn.Linear):
|
class Linear8bitLt(nn.Linear):
|
||||||
def __init__(
|
def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True,
|
||||||
self,
|
memory_efficient_backward=False, threshold=0.0, index=None):
|
||||||
input_features,
|
super().__init__(input_features, output_features, bias)
|
||||||
output_features,
|
assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
|
||||||
bias=True,
|
|
||||||
has_fp16_weights=True,
|
|
||||||
memory_efficient_backward=False,
|
|
||||||
threshold=0.0,
|
|
||||||
index=None,
|
|
||||||
):
|
|
||||||
super().__init__(
|
|
||||||
input_features, output_features, bias
|
|
||||||
)
|
|
||||||
self.state = bnb.MatmulLtState()
|
self.state = bnb.MatmulLtState()
|
||||||
self.index = index
|
self.index = index
|
||||||
|
|
||||||
|
@ -231,9 +222,7 @@ class Linear8bitLt(nn.Linear):
|
||||||
if threshold > 0.0 and not has_fp16_weights:
|
if threshold > 0.0 and not has_fp16_weights:
|
||||||
self.state.use_pool = True
|
self.state.use_pool = True
|
||||||
|
|
||||||
self.weight = Int8Params(
|
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
|
||||||
self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights
|
|
||||||
)
|
|
||||||
|
|
||||||
def init_8bit_state(self):
|
def init_8bit_state(self):
|
||||||
self.state.CB = self.weight.CB
|
self.state.CB = self.weight.CB
|
||||||
|
@ -241,27 +230,20 @@ class Linear8bitLt(nn.Linear):
|
||||||
self.weight.CB = None
|
self.weight.CB = None
|
||||||
self.weight.SCB = None
|
self.weight.SCB = None
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x: torch.Tensor):
|
||||||
self.state.is_training = self.training
|
self.state.is_training = self.training
|
||||||
|
|
||||||
if self.weight.CB is not None:
|
if self.weight.CB is not None:
|
||||||
self.init_8bit_state()
|
self.init_8bit_state()
|
||||||
|
|
||||||
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
||||||
if self.bias is not None and self.bias.dtype != torch.float16:
|
if self.bias is not None and self.bias.dtype != x.dtype:
|
||||||
self.bias.data = self.bias.data.half()
|
self.bias.data = self.bias.data.to(x.dtype)
|
||||||
|
|
||||||
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
|
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
|
||||||
|
|
||||||
if not self.state.has_fp16_weights:
|
if not self.state.has_fp16_weights:
|
||||||
if not self.state.memory_efficient_backward and self.state.CB is not None:
|
if self.state.CB is not None and self.state.CxB is not None:
|
||||||
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
||||||
# we no longer need the row-major weight
|
# we no longer need the row-major weight
|
||||||
del self.state.CB
|
del self.state.CB
|
||||||
self.weight.data = self.state.CxB
|
self.weight.data = self.state.CxB
|
||||||
elif self.state.memory_efficient_backward and self.state.CxB is not None:
|
|
||||||
# For memory efficient backward, we convert 8-bit row major to turing/ampere format at each inference pass.
|
|
||||||
# Thus, we delete CxB from the state.
|
|
||||||
del self.state.CxB
|
|
||||||
|
|
||||||
return out
|
return out
|
||||||
|
|
2
setup.py
2
setup.py
|
@ -18,7 +18,7 @@ def read(fname):
|
||||||
|
|
||||||
setup(
|
setup(
|
||||||
name=f"bitsandbytes",
|
name=f"bitsandbytes",
|
||||||
version=f"0.36.0-2",
|
version=f"0.37.0",
|
||||||
author="Tim Dettmers",
|
author="Tim Dettmers",
|
||||||
author_email="dettmers@cs.washington.edu",
|
author_email="dettmers@cs.washington.edu",
|
||||||
description="8-bit optimizers and matrix multiplication routines.",
|
description="8-bit optimizers and matrix multiplication routines.",
|
||||||
|
|
61
tests/test_linear8bitlt.py
Normal file
61
tests/test_linear8bitlt.py
Normal file
|
@ -0,0 +1,61 @@
|
||||||
|
import bitsandbytes as bnb
|
||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
from bitsandbytes import functional as F
|
||||||
|
|
||||||
|
from bitsandbytes.autograd import get_inverse_transform_indices, undo_layout
|
||||||
|
from bitsandbytes.nn.modules import Linear8bitLt
|
||||||
|
|
||||||
|
# contributed by Alex Borzunov, see:
|
||||||
|
# https://github.com/bigscience-workshop/petals/blob/main/tests/test_linear8bitlt.py
|
||||||
|
|
||||||
|
@pytest.mark.skipif(
|
||||||
|
not torch.cuda.is_available() or torch.cuda.get_device_capability() < (7, 5),
|
||||||
|
reason="this test requires a turing-generation or newer GPU, see bitsandbytes docs",
|
||||||
|
)
|
||||||
|
def test_layout_exact_match():
|
||||||
|
x = (torch.randn(14336 * 3, 14336) * 10).to(torch.int8).cuda()
|
||||||
|
for tile_size, order in ((8, 32), "col_turing"), ((32, 32), "col_ampere"):
|
||||||
|
transform = lambda x: F.transform(x.cuda(), from_order="row", to_order=order)[0].to(x.device)
|
||||||
|
tile_indices = get_inverse_transform_indices(transform, tile_size)
|
||||||
|
cxb = transform(x)
|
||||||
|
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
restored_x = undo_layout(cxb, tile_indices)
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
assert restored_x.is_contiguous()
|
||||||
|
assert torch.all(torch.eq(restored_x, x))
|
||||||
|
|
||||||
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
|
||||||
|
def test_linear_no_igemmlt():
|
||||||
|
linear = torch.nn.Linear(1024, 3072)
|
||||||
|
x = torch.randn(3, 1024, dtype=torch.half)
|
||||||
|
linear_custom = Linear8bitLt(
|
||||||
|
linear.in_features,
|
||||||
|
linear.out_features,
|
||||||
|
linear.bias is not None,
|
||||||
|
has_fp16_weights=False,
|
||||||
|
threshold=6.0,
|
||||||
|
)
|
||||||
|
linear_custom.state.force_no_igemmlt = True
|
||||||
|
|
||||||
|
linear_custom.weight = bnb.nn.Int8Params(
|
||||||
|
linear.weight.data.clone(), requires_grad=False, has_fp16_weights=False
|
||||||
|
).to(linear.weight.dtype)
|
||||||
|
linear_custom.bias = linear.bias
|
||||||
|
linear = linear_custom.cuda()
|
||||||
|
linear = linear.half().cuda()
|
||||||
|
|
||||||
|
x_ref = x.clone().cuda().requires_grad_(True)
|
||||||
|
x_ours = x.clone().cuda().requires_grad_(True)
|
||||||
|
fx_ref = linear(x_ref).float()
|
||||||
|
grad_proj = torch.randn_like(fx_ref)
|
||||||
|
(fx_ref * grad_proj).mean().backward()
|
||||||
|
|
||||||
|
fx_ours = linear_custom(x_ours).float()
|
||||||
|
(fx_ours * grad_proj).mean().backward()
|
||||||
|
assert torch.allclose(fx_ref, fx_ours, atol=0.02)
|
||||||
|
assert torch.allclose(x_ref.grad, x_ours.grad, atol=0.01)
|
||||||
|
assert not linear_custom.state.has_fp16_weights
|
||||||
|
assert linear_custom.state.CB is not None
|
||||||
|
assert linear_custom.state.CxB is None
|
|
@ -382,7 +382,7 @@ names = [f"threshold_{vals}" for vals in values]
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("threshold", values, ids=names)
|
@pytest.mark.parametrize("threshold", values, ids=names)
|
||||||
@pytest.mark.parametrize("memory_efficient_backward", [True, False])
|
@pytest.mark.parametrize("memory_efficient_backward", [False])
|
||||||
def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward):
|
def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward):
|
||||||
l1 = (
|
l1 = (
|
||||||
bnb.nn.Linear8bitLt(
|
bnb.nn.Linear8bitLt(
|
||||||
|
|
Loading…
Reference in New Issue
Block a user