Added outlier detector and fake quantization layer.

This commit is contained in:
Tim Dettmers 2023-01-28 17:05:22 -08:00
parent 1341fb44ad
commit c9f505064e
6 changed files with 225 additions and 5 deletions

View File

@ -168,7 +168,7 @@ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8)
values = []
lst = list(itertools.product([0, 1], repeat=precision_bits))
#for ev in evalues:
bias = 2**(exponent_bits-1)-1
bias = 2**(exponent_bits-1)
for evalue in range(2**(exponent_bits)):
for bit_pattern in lst:
value = (1 if evalue != 0 else 0)
@ -176,10 +176,10 @@ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8)
value += pval*(2**-(i+1))
if evalue == 0:
# subnormals
value = value*2**-(bias-1)
value = value*2**-(bias)
else:
# normals
value = value*2**-(evalue-bias-2)
value = value*2**-(evalue-bias-1)
values.append(value)
if signed:
values.append(-value)

View File

@ -2,4 +2,4 @@
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .modules import Int8Params, Linear8bitLt, StableEmbedding
from .modules import Int8Params, Linear8bitLt, StableEmbedding, OutlierAwareLinear, Fake4bitLinear

View File

@ -10,6 +10,7 @@ from torch import Tensor, device, dtype, nn
import bitsandbytes as bnb
from bitsandbytes.optim import GlobalOptimManager
from bitsandbytes.utils import OutlierTracer, find_outlier_dims
T = TypeVar("T", bound="torch.nn.Module")
@ -133,6 +134,83 @@ class Embedding(torch.nn.Embedding):
return emb
class OutlierAwareLinear(nn.Linear):
def __init__(self, input_features, output_features, bias=True):
super().__init__(input_features, output_features, bias)
self.outlier_dim = None
self.is_quantized = False
def forward_with_outliers(self, x, outlier_idx):
raise NotImplementedError('Please override the `forward_with_outliers(self, x, outlier_idx)` function')
def quantize_weight(self, w, outlier_idx):
raise NotImplementedError('Please override the `quantize_weights(self, w, outlier_idx)` function')
def forward(self, x):
if self.outlier_dim is None:
tracer = OutlierTracer.get_instance()
if not tracer.is_initialized():
print('Please use OutlierTracer.initialize(model) before using the OutlierAwareLinear layer')
outlier_idx = tracer.get_outliers(self.weight)
#print(outlier_idx, tracer.get_hvalue(self.weight))
self.outlier_dim = outlier_idx
if not self.is_quantized:
w = self.quantize_weight(self.weight, self.outlier_dim)
self.weight.data.copy_(w)
self.is_quantized = True
return self.forward_with_outliers(x, self.outlier_dim)
class Fake4bitLinear(OutlierAwareLinear):
def __init__(self, input_features, output_features, bias=True, codebook=bnb.functional.create_fp8_map(True, 3, 0, total_bits=4)):
super().__init__(input_features, output_features, bias)
self.codebook = codebook
def quantize_weight(self, w, outlier_idx):
if outlier_idx.numel() > 0:
subw = w[:, outlier_idx].clone()
w[:, outlier_idx] = 0
wdtype = w.dtype
code = self.codebook.to(w.device)
cw, state = bnb.functional.quantize_blockwise(w, code=code, blocksize=64)
w = bnb.functional.dequantize_blockwise(cw, state, blocksize=64)
w = w.to(wdtype)
if outlier_idx.numel() > 0:
w[:, outlier_idx] = subw
self.is_quantized = True
return w
def forward_with_outliers(self, x, outlier_idx):
dims = torch.abs(x> 4).sum(dim=list(range(len(x.shape)-1)))
outlier_idx2 = torch.where(dims > 0)[0]
outlier_idx = torch.cat([outlier_idx, outlier_idx2]).unique()
n = x.shape[-1]
idx = torch.arange(n, device=x.device)
idx[outlier_idx] = -1
inverse_idx = torch.where(idx >= 0)[0]
if outlier_idx.numel() > 0:
subx = x[..., outlier_idx].clone()
#print(1, subx, 1)
#x[..., outlier_idx] = 0
inverse_x = x[...,inverse_idx]
xdtype = x.dtype
#code = bnb.functional.create_fp8_map(True, 4-3, 2, 4).to(x.device)
#code = bnb.functional.create_quantile_map(x, 4).to(x.device)
code = bnb.functional.create_dynamic_map(True, total_bits=4.0).to(x.device)
c, state = bnb.functional.quantize_blockwise(inverse_x, code=code, blocksize=64)
inverse_x = bnb.functional.dequantize_blockwise(c, state, blocksize=64)
#c, state = bnb.functional.quantize_blockwise(x, code=code, blocksize=64)
#x = bnb.functional.dequantize_blockwise(c, state, blocksize=64)
x = x.to(xdtype)
x[..., inverse_idx] = inverse_x.to(x.dtype)
#if outlier_idx.numel() > 0:
#x[..., outlier_idx] = subx
return torch.nn.functional.linear(x, self.weight, self.bias)
class Int8Params(torch.nn.Parameter):
def __new__(

View File

@ -1,7 +1,143 @@
import shlex
import subprocess
import torch
from typing import Tuple
def outlier_hook(module, input):
assert isinstance(module, torch.nn.Linear)
tracer = OutlierTracer.get_instance()
hvalue = tracer.get_hvalue(module.weight)
if hvalue not in tracer.hvalue2outlier_idx:
outlier_idx = find_outlier_dims(module.weight)
tracer.outliers.append(outlier_idx)
tracer.hvalues.append(hvalue)
if len(tracer.outliers) > 1:
# assign the current layer the outlier idx found from the weight
# of the previous linear layer
if tracer.outliers[-1].numel() > 0:
assert tracer.outliers[-1].max() < module.weight.shape[1]
tracer.hvalue2outlier_idx[hvalue] = tracer.outliers[-1]
else:
# first layer, we cannot use the weight for outlier detection
# we follow a mixed approach:
# (1) zscore test of std of hidden dimension
# (2) magnitude > 6 test
merged = input[0].view(-1, input[0].shape[-1])
# (1) zscore test of std of hidden dimension
outlier_idx = find_outlier_dims(merged, reduction_dim=1, zscore=3)
# (2) magnitude > 6 test
dims = (torch.abs(input[0])> 6).sum(dim=list(range(len(input[0].shape)-1)))
outlier_idx2 = torch.where(dims > 0)[0]
outlier_idx = torch.cat([outlier_idx, outlier_idx2]).unique()
tracer.hvalue2outlier_idx[hvalue] = outlier_idx
else:
for hook in tracer.hooks:
hook.remove()
class OutlierTracer(object):
_instance = None
def __init__(self):
raise RuntimeError("Call get_instance() instead")
def initialize(self, model):
self.last_w = None
self.current_outlier_dims = None
self.hvalues = []
self.outliers = []
self.hvalue2outlier_idx = {}
self.initialized = True
self.hooks = []
for n, m in model.named_modules():
if isinstance(m, torch.nn.Linear):
self.hooks.append(m.register_forward_pre_hook(outlier_hook))
def is_initialized(self):
return getattr(self, 'initialized', False)
def get_hvalue(self, weight):
return weight.data.storage().data_ptr()
def get_outliers(self, weight):
if not self.is_initialized():
print('Outlier tracer is not initialized...')
return None
hvalue = self.get_hvalue(weight)
if hvalue in self.hvalue2outlier_idx:
return self.hvalue2outlier_idx[hvalue]
else:
return None
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
return cls._instance
def find_outlier_dims(weight, reduction_dim=0, zscore=4.0, topk=None, rdm=False):
if rdm:
return torch.randint(0, weight.shape[1], size=(topk,), device=weight.device).long()
m = weight.mean(reduction_dim)
mm = m.mean()
mstd = m.std()
zm = (m-mm)/mstd
std = weight.std(reduction_dim)
stdm = std.mean()
stdstd = std.std()
zstd = (std-stdm)/stdstd
if topk is not None:
val, idx = torch.topk(std.abs(), k=topk, dim=0)
else:
idx = torch.where(zstd > zscore)[0]
return idx
def replace_linear(model, linear_replacement, skip_modules=["lm_head"], copy_weights=False, post_processing_function=None):
"""
Replace linear modules with a new Linear module.
Parameters:
model (`torch.nn.Module`):
Input model or `torch.nn.Module` as the function is run recursively.
linear_replacement (`torch.nn.Module`):
The linear module that replaces the old one. Only expects standard arguments.
If other arguments need to be passed, use a lambda.
skip_modules (`List[str]`, *optional*, defaults to `lm_head`):
List of modules names not to convert. Defaults to `lm_head`.
copy_weights (`bool`):
Copy the weights from the old linear module to the new one
post_processing_fun_name (`str`):
A function name of the replacement linear class that is called
after processing.
"""
for name, module in model.named_children():
if len(list(module.children())) > 0:
replace_linear(module, linear_replacement, skip_modules, copy_weights, post_processing_function)
if isinstance(module, torch.nn.Linear) and name not in skip_modules:
old_module = model._modules[name]
model._modules[name] = linear_replacement(
module.in_features,
module.out_features,
module.bias is not None,
)
if copy_weights:
model._modules[name].weight = old_module.weight
model._modules[name].bias = old_module.bias
if post_processing_function is not None:
func = getattr(module, post_processing_function, None)
if func is not None: func(module)
return model
def execute_and_return(command_string: str) -> Tuple[str, str]:
def _decode(subprocess_err_out_tuple):

View File

@ -543,7 +543,9 @@ __global__ void kDequantizeBlockwise(float *code, unsigned char * A, float * abs
// load code through read-only cache via __ldg
#pragma unroll NUM_PER_TH
for(int j = 0; j < NUM_PER_TH; j++)
{
vals[j] = __ldg(&code[qvals[j]])*local_abs_max;
}
__syncthreads();
StoreT(storet).Store(&(out[i]), vals, valid_items);

View File

@ -2109,6 +2109,7 @@ def test_few_bit_quant():
ebits = math.ceil(bits/2)
pbits = bits-ebits-1
code = F.create_fp8_map(True, ebits, pbits, bits).cuda()
print(code)
elif method == 'dynamic':
code = F.create_dynamic_map(True, bits-0, bits).cuda()
elif method == 'quantile':
@ -2181,7 +2182,9 @@ def test_kbit_quantile_estimation():
def test_bench_dequantization():
a = torch.rand(1024, 1024, device='cuda').half()
qa, SA = F.quantize_blockwise(a)
code =F.create_fp8_map(True, 3, 0, 4).cuda()
qa, SA = F.quantize_blockwise(a, code=code)
print(qa.max())
max_theoretical_mu = 1024*1024*2/1024**3/672*1000*1000
#print(max_theoretical_mu)
@ -2193,3 +2196,4 @@ def test_bench_dequantization():
torch.cuda.synchronize()
#print((time.time()-t0)/1e6)