Added outlier detector and fake quantization layer.
This commit is contained in:
parent
1341fb44ad
commit
c9f505064e
|
@ -168,7 +168,7 @@ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8)
|
|||
values = []
|
||||
lst = list(itertools.product([0, 1], repeat=precision_bits))
|
||||
#for ev in evalues:
|
||||
bias = 2**(exponent_bits-1)-1
|
||||
bias = 2**(exponent_bits-1)
|
||||
for evalue in range(2**(exponent_bits)):
|
||||
for bit_pattern in lst:
|
||||
value = (1 if evalue != 0 else 0)
|
||||
|
@ -176,10 +176,10 @@ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8)
|
|||
value += pval*(2**-(i+1))
|
||||
if evalue == 0:
|
||||
# subnormals
|
||||
value = value*2**-(bias-1)
|
||||
value = value*2**-(bias)
|
||||
else:
|
||||
# normals
|
||||
value = value*2**-(evalue-bias-2)
|
||||
value = value*2**-(evalue-bias-1)
|
||||
values.append(value)
|
||||
if signed:
|
||||
values.append(-value)
|
||||
|
|
|
@ -2,4 +2,4 @@
|
|||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
from .modules import Int8Params, Linear8bitLt, StableEmbedding
|
||||
from .modules import Int8Params, Linear8bitLt, StableEmbedding, OutlierAwareLinear, Fake4bitLinear
|
||||
|
|
|
@ -10,6 +10,7 @@ from torch import Tensor, device, dtype, nn
|
|||
|
||||
import bitsandbytes as bnb
|
||||
from bitsandbytes.optim import GlobalOptimManager
|
||||
from bitsandbytes.utils import OutlierTracer, find_outlier_dims
|
||||
|
||||
T = TypeVar("T", bound="torch.nn.Module")
|
||||
|
||||
|
@ -133,6 +134,83 @@ class Embedding(torch.nn.Embedding):
|
|||
|
||||
return emb
|
||||
|
||||
class OutlierAwareLinear(nn.Linear):
|
||||
def __init__(self, input_features, output_features, bias=True):
|
||||
super().__init__(input_features, output_features, bias)
|
||||
self.outlier_dim = None
|
||||
self.is_quantized = False
|
||||
|
||||
def forward_with_outliers(self, x, outlier_idx):
|
||||
raise NotImplementedError('Please override the `forward_with_outliers(self, x, outlier_idx)` function')
|
||||
|
||||
def quantize_weight(self, w, outlier_idx):
|
||||
raise NotImplementedError('Please override the `quantize_weights(self, w, outlier_idx)` function')
|
||||
|
||||
def forward(self, x):
|
||||
if self.outlier_dim is None:
|
||||
tracer = OutlierTracer.get_instance()
|
||||
if not tracer.is_initialized():
|
||||
print('Please use OutlierTracer.initialize(model) before using the OutlierAwareLinear layer')
|
||||
outlier_idx = tracer.get_outliers(self.weight)
|
||||
#print(outlier_idx, tracer.get_hvalue(self.weight))
|
||||
self.outlier_dim = outlier_idx
|
||||
|
||||
if not self.is_quantized:
|
||||
w = self.quantize_weight(self.weight, self.outlier_dim)
|
||||
self.weight.data.copy_(w)
|
||||
self.is_quantized = True
|
||||
|
||||
return self.forward_with_outliers(x, self.outlier_dim)
|
||||
|
||||
|
||||
class Fake4bitLinear(OutlierAwareLinear):
|
||||
def __init__(self, input_features, output_features, bias=True, codebook=bnb.functional.create_fp8_map(True, 3, 0, total_bits=4)):
|
||||
super().__init__(input_features, output_features, bias)
|
||||
self.codebook = codebook
|
||||
|
||||
def quantize_weight(self, w, outlier_idx):
|
||||
if outlier_idx.numel() > 0:
|
||||
subw = w[:, outlier_idx].clone()
|
||||
w[:, outlier_idx] = 0
|
||||
wdtype = w.dtype
|
||||
code = self.codebook.to(w.device)
|
||||
cw, state = bnb.functional.quantize_blockwise(w, code=code, blocksize=64)
|
||||
w = bnb.functional.dequantize_blockwise(cw, state, blocksize=64)
|
||||
w = w.to(wdtype)
|
||||
if outlier_idx.numel() > 0:
|
||||
w[:, outlier_idx] = subw
|
||||
self.is_quantized = True
|
||||
return w
|
||||
|
||||
def forward_with_outliers(self, x, outlier_idx):
|
||||
dims = torch.abs(x> 4).sum(dim=list(range(len(x.shape)-1)))
|
||||
outlier_idx2 = torch.where(dims > 0)[0]
|
||||
outlier_idx = torch.cat([outlier_idx, outlier_idx2]).unique()
|
||||
n = x.shape[-1]
|
||||
idx = torch.arange(n, device=x.device)
|
||||
idx[outlier_idx] = -1
|
||||
inverse_idx = torch.where(idx >= 0)[0]
|
||||
if outlier_idx.numel() > 0:
|
||||
subx = x[..., outlier_idx].clone()
|
||||
#print(1, subx, 1)
|
||||
#x[..., outlier_idx] = 0
|
||||
inverse_x = x[...,inverse_idx]
|
||||
xdtype = x.dtype
|
||||
#code = bnb.functional.create_fp8_map(True, 4-3, 2, 4).to(x.device)
|
||||
#code = bnb.functional.create_quantile_map(x, 4).to(x.device)
|
||||
code = bnb.functional.create_dynamic_map(True, total_bits=4.0).to(x.device)
|
||||
c, state = bnb.functional.quantize_blockwise(inverse_x, code=code, blocksize=64)
|
||||
inverse_x = bnb.functional.dequantize_blockwise(c, state, blocksize=64)
|
||||
#c, state = bnb.functional.quantize_blockwise(x, code=code, blocksize=64)
|
||||
#x = bnb.functional.dequantize_blockwise(c, state, blocksize=64)
|
||||
x = x.to(xdtype)
|
||||
x[..., inverse_idx] = inverse_x.to(x.dtype)
|
||||
#if outlier_idx.numel() > 0:
|
||||
#x[..., outlier_idx] = subx
|
||||
|
||||
return torch.nn.functional.linear(x, self.weight, self.bias)
|
||||
|
||||
|
||||
|
||||
class Int8Params(torch.nn.Parameter):
|
||||
def __new__(
|
||||
|
|
|
@ -1,7 +1,143 @@
|
|||
import shlex
|
||||
import subprocess
|
||||
import torch
|
||||
from typing import Tuple
|
||||
|
||||
def outlier_hook(module, input):
|
||||
assert isinstance(module, torch.nn.Linear)
|
||||
tracer = OutlierTracer.get_instance()
|
||||
hvalue = tracer.get_hvalue(module.weight)
|
||||
if hvalue not in tracer.hvalue2outlier_idx:
|
||||
outlier_idx = find_outlier_dims(module.weight)
|
||||
tracer.outliers.append(outlier_idx)
|
||||
tracer.hvalues.append(hvalue)
|
||||
if len(tracer.outliers) > 1:
|
||||
# assign the current layer the outlier idx found from the weight
|
||||
# of the previous linear layer
|
||||
if tracer.outliers[-1].numel() > 0:
|
||||
assert tracer.outliers[-1].max() < module.weight.shape[1]
|
||||
tracer.hvalue2outlier_idx[hvalue] = tracer.outliers[-1]
|
||||
|
||||
else:
|
||||
# first layer, we cannot use the weight for outlier detection
|
||||
# we follow a mixed approach:
|
||||
# (1) zscore test of std of hidden dimension
|
||||
# (2) magnitude > 6 test
|
||||
merged = input[0].view(-1, input[0].shape[-1])
|
||||
# (1) zscore test of std of hidden dimension
|
||||
outlier_idx = find_outlier_dims(merged, reduction_dim=1, zscore=3)
|
||||
# (2) magnitude > 6 test
|
||||
dims = (torch.abs(input[0])> 6).sum(dim=list(range(len(input[0].shape)-1)))
|
||||
outlier_idx2 = torch.where(dims > 0)[0]
|
||||
outlier_idx = torch.cat([outlier_idx, outlier_idx2]).unique()
|
||||
tracer.hvalue2outlier_idx[hvalue] = outlier_idx
|
||||
else:
|
||||
for hook in tracer.hooks:
|
||||
hook.remove()
|
||||
|
||||
|
||||
class OutlierTracer(object):
|
||||
_instance = None
|
||||
|
||||
def __init__(self):
|
||||
raise RuntimeError("Call get_instance() instead")
|
||||
|
||||
def initialize(self, model):
|
||||
self.last_w = None
|
||||
self.current_outlier_dims = None
|
||||
self.hvalues = []
|
||||
self.outliers = []
|
||||
self.hvalue2outlier_idx = {}
|
||||
self.initialized = True
|
||||
self.hooks = []
|
||||
|
||||
for n, m in model.named_modules():
|
||||
if isinstance(m, torch.nn.Linear):
|
||||
self.hooks.append(m.register_forward_pre_hook(outlier_hook))
|
||||
|
||||
def is_initialized(self):
|
||||
return getattr(self, 'initialized', False)
|
||||
|
||||
def get_hvalue(self, weight):
|
||||
return weight.data.storage().data_ptr()
|
||||
|
||||
def get_outliers(self, weight):
|
||||
if not self.is_initialized():
|
||||
print('Outlier tracer is not initialized...')
|
||||
return None
|
||||
hvalue = self.get_hvalue(weight)
|
||||
if hvalue in self.hvalue2outlier_idx:
|
||||
return self.hvalue2outlier_idx[hvalue]
|
||||
else:
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def get_instance(cls):
|
||||
if cls._instance is None:
|
||||
cls._instance = cls.__new__(cls)
|
||||
return cls._instance
|
||||
|
||||
def find_outlier_dims(weight, reduction_dim=0, zscore=4.0, topk=None, rdm=False):
|
||||
if rdm:
|
||||
return torch.randint(0, weight.shape[1], size=(topk,), device=weight.device).long()
|
||||
|
||||
m = weight.mean(reduction_dim)
|
||||
mm = m.mean()
|
||||
mstd = m.std()
|
||||
zm = (m-mm)/mstd
|
||||
|
||||
std = weight.std(reduction_dim)
|
||||
stdm = std.mean()
|
||||
stdstd = std.std()
|
||||
|
||||
zstd = (std-stdm)/stdstd
|
||||
|
||||
if topk is not None:
|
||||
val, idx = torch.topk(std.abs(), k=topk, dim=0)
|
||||
else:
|
||||
idx = torch.where(zstd > zscore)[0]
|
||||
|
||||
return idx
|
||||
|
||||
def replace_linear(model, linear_replacement, skip_modules=["lm_head"], copy_weights=False, post_processing_function=None):
|
||||
"""
|
||||
Replace linear modules with a new Linear module.
|
||||
|
||||
Parameters:
|
||||
model (`torch.nn.Module`):
|
||||
Input model or `torch.nn.Module` as the function is run recursively.
|
||||
linear_replacement (`torch.nn.Module`):
|
||||
The linear module that replaces the old one. Only expects standard arguments.
|
||||
If other arguments need to be passed, use a lambda.
|
||||
skip_modules (`List[str]`, *optional*, defaults to `lm_head`):
|
||||
List of modules names not to convert. Defaults to `lm_head`.
|
||||
copy_weights (`bool`):
|
||||
Copy the weights from the old linear module to the new one
|
||||
post_processing_fun_name (`str`):
|
||||
A function name of the replacement linear class that is called
|
||||
after processing.
|
||||
"""
|
||||
for name, module in model.named_children():
|
||||
if len(list(module.children())) > 0:
|
||||
replace_linear(module, linear_replacement, skip_modules, copy_weights, post_processing_function)
|
||||
|
||||
if isinstance(module, torch.nn.Linear) and name not in skip_modules:
|
||||
old_module = model._modules[name]
|
||||
model._modules[name] = linear_replacement(
|
||||
module.in_features,
|
||||
module.out_features,
|
||||
module.bias is not None,
|
||||
)
|
||||
if copy_weights:
|
||||
model._modules[name].weight = old_module.weight
|
||||
model._modules[name].bias = old_module.bias
|
||||
|
||||
if post_processing_function is not None:
|
||||
func = getattr(module, post_processing_function, None)
|
||||
if func is not None: func(module)
|
||||
return model
|
||||
|
||||
|
||||
|
||||
def execute_and_return(command_string: str) -> Tuple[str, str]:
|
||||
def _decode(subprocess_err_out_tuple):
|
||||
|
|
|
@ -543,7 +543,9 @@ __global__ void kDequantizeBlockwise(float *code, unsigned char * A, float * abs
|
|||
// load code through read-only cache via __ldg
|
||||
#pragma unroll NUM_PER_TH
|
||||
for(int j = 0; j < NUM_PER_TH; j++)
|
||||
{
|
||||
vals[j] = __ldg(&code[qvals[j]])*local_abs_max;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
StoreT(storet).Store(&(out[i]), vals, valid_items);
|
||||
|
|
|
@ -2109,6 +2109,7 @@ def test_few_bit_quant():
|
|||
ebits = math.ceil(bits/2)
|
||||
pbits = bits-ebits-1
|
||||
code = F.create_fp8_map(True, ebits, pbits, bits).cuda()
|
||||
print(code)
|
||||
elif method == 'dynamic':
|
||||
code = F.create_dynamic_map(True, bits-0, bits).cuda()
|
||||
elif method == 'quantile':
|
||||
|
@ -2181,7 +2182,9 @@ def test_kbit_quantile_estimation():
|
|||
|
||||
def test_bench_dequantization():
|
||||
a = torch.rand(1024, 1024, device='cuda').half()
|
||||
qa, SA = F.quantize_blockwise(a)
|
||||
code =F.create_fp8_map(True, 3, 0, 4).cuda()
|
||||
qa, SA = F.quantize_blockwise(a, code=code)
|
||||
print(qa.max())
|
||||
|
||||
max_theoretical_mu = 1024*1024*2/1024**3/672*1000*1000
|
||||
#print(max_theoretical_mu)
|
||||
|
@ -2193,3 +2196,4 @@ def test_bench_dequantization():
|
|||
torch.cuda.synchronize()
|
||||
#print((time.time()-t0)/1e6)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user