Added k-bit linear quantization.
This commit is contained in:
parent
1efb87d89d
commit
caf1832526
|
@ -130,11 +130,17 @@ class Cusparse_Context(object):
|
|||
return cls._instance
|
||||
|
||||
|
||||
def create_linear_map(signed=True):
|
||||
if signed:
|
||||
return torch.linspace(-1.0, 1.0, 256)
|
||||
def create_linear_map(signed=True, bits=8):
|
||||
sign = (-1.0 if signed else 0.0)
|
||||
|
||||
values = torch.linspace(sign, 1.0, 2**bits)
|
||||
gap = 256 - values.numel()
|
||||
if gap == 0:
|
||||
return values
|
||||
else:
|
||||
return torch.linspace(0.0, 1.0, 256)
|
||||
l = values.numel()//2
|
||||
#return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
|
||||
return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
|
||||
|
||||
|
||||
def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
|
||||
|
|
|
@ -2091,3 +2091,53 @@ def test_fp8_quant():
|
|||
print(3, sum(abserr)/len(abserr))
|
||||
print(3, sum(relerr)/len(relerr))
|
||||
|
||||
|
||||
def test_few_bit_quant():
|
||||
|
||||
for bits in range(2, 9):
|
||||
code = F.create_linear_map(True, bits=bits).cuda()
|
||||
assert code.numel() == 256
|
||||
print(bits)
|
||||
for i in range(100):
|
||||
|
||||
values = torch.randn(1, 24, device='cuda')
|
||||
values /= values.abs().max()
|
||||
#values[values.abs() < 1e-6] += 1e-5
|
||||
|
||||
q1 = []
|
||||
v1 = []
|
||||
for v in values[0]:
|
||||
idx = torch.abs(v-code).argmin()
|
||||
q1.append(idx.item())
|
||||
v1.append(code[idx].item())
|
||||
|
||||
q1 = torch.Tensor(q1).cuda()
|
||||
v1 = torch.Tensor(v1).cuda()
|
||||
|
||||
q2, S2 = F.quantize(values, code=code)
|
||||
v2 = F.dequantize(q2, S2)
|
||||
|
||||
idx = torch.isclose(q1.int(), q2.int())
|
||||
if idx.sum():
|
||||
# some weird cases
|
||||
err1 = torch.abs(v1-values).mean()
|
||||
err2 = torch.abs(v2-values).mean()
|
||||
assert err2 <= err1
|
||||
|
||||
else:
|
||||
torch.testing.assert_allclose(q1, q2)
|
||||
|
||||
#print(e_bits, p_bits)
|
||||
#abserr = []
|
||||
#relerr = []
|
||||
#for i in range(100):
|
||||
# A1 = torch.randn(1024, 1024, device="cuda")
|
||||
# C, SC = F.quantize_blockwise(A1, code=code)
|
||||
# A2 = F.dequantize_blockwise(C, SC)
|
||||
# diff = torch.abs(A1 - A2)
|
||||
# reldiff = diff/torch.abs(A1+1e-8)
|
||||
# abserr.append(diff.mean().item())
|
||||
# relerr.append(reldiff.mean().item())
|
||||
# #assert diff < 0.0075
|
||||
#print(sum(abserr)/len(abserr))
|
||||
#print(sum(relerr)/len(relerr))
|
||||
|
|
Loading…
Reference in New Issue
Block a user