Added k-bit linear quantization.

This commit is contained in:
Tim Dettmers 2022-11-06 11:47:54 -08:00
parent 1efb87d89d
commit caf1832526
2 changed files with 60 additions and 4 deletions

View File

@ -130,11 +130,17 @@ class Cusparse_Context(object):
return cls._instance return cls._instance
def create_linear_map(signed=True): def create_linear_map(signed=True, bits=8):
if signed: sign = (-1.0 if signed else 0.0)
return torch.linspace(-1.0, 1.0, 256)
values = torch.linspace(sign, 1.0, 2**bits)
gap = 256 - values.numel()
if gap == 0:
return values
else: else:
return torch.linspace(0.0, 1.0, 256) l = values.numel()//2
#return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2): def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):

View File

@ -2091,3 +2091,53 @@ def test_fp8_quant():
print(3, sum(abserr)/len(abserr)) print(3, sum(abserr)/len(abserr))
print(3, sum(relerr)/len(relerr)) print(3, sum(relerr)/len(relerr))
def test_few_bit_quant():
for bits in range(2, 9):
code = F.create_linear_map(True, bits=bits).cuda()
assert code.numel() == 256
print(bits)
for i in range(100):
values = torch.randn(1, 24, device='cuda')
values /= values.abs().max()
#values[values.abs() < 1e-6] += 1e-5
q1 = []
v1 = []
for v in values[0]:
idx = torch.abs(v-code).argmin()
q1.append(idx.item())
v1.append(code[idx].item())
q1 = torch.Tensor(q1).cuda()
v1 = torch.Tensor(v1).cuda()
q2, S2 = F.quantize(values, code=code)
v2 = F.dequantize(q2, S2)
idx = torch.isclose(q1.int(), q2.int())
if idx.sum():
# some weird cases
err1 = torch.abs(v1-values).mean()
err2 = torch.abs(v2-values).mean()
assert err2 <= err1
else:
torch.testing.assert_allclose(q1, q2)
#print(e_bits, p_bits)
#abserr = []
#relerr = []
#for i in range(100):
# A1 = torch.randn(1024, 1024, device="cuda")
# C, SC = F.quantize_blockwise(A1, code=code)
# A2 = F.dequantize_blockwise(C, SC)
# diff = torch.abs(A1 - A2)
# reldiff = diff/torch.abs(A1+1e-8)
# abserr.append(diff.mean().item())
# relerr.append(reldiff.mean().item())
# #assert diff < 0.0075
#print(sum(abserr)/len(abserr))
#print(sum(relerr)/len(relerr))