Copied over Analysis Adam.
This commit is contained in:
parent
d06c5776e4
commit
eaf35ab949
|
@ -26,3 +26,202 @@ class Adam32bit(Optimizer2State):
|
|||
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
|
||||
|
||||
|
||||
|
||||
class AnalysisAdam(torch.optim.Optimizer):
|
||||
"""Implements 8-bit Adam and performs error analysis.
|
||||
|
||||
This implementation is modified from torch.optim.Adam based on:
|
||||
`Fixed Weight Decay Regularization in Adam`
|
||||
(see https://arxiv.org/abs/1711.05101)
|
||||
|
||||
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
|
||||
|
||||
Arguments:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
parameter groups
|
||||
lr (float, optional): learning rate (default: 1e-3)
|
||||
betas (Tuple[float, float], optional): coefficients used for computing
|
||||
running averages of gradient and its square (default: (0.9, 0.999))
|
||||
eps (float, optional): term added to the denominator to improve
|
||||
numerical stability (default: 1e-8)
|
||||
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
||||
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
|
||||
algorithm from the paper `On the Convergence of Adam and Beyond`_
|
||||
|
||||
.. _Adam\: A Method for Stochastic Optimization:
|
||||
https://arxiv.org/abs/1412.6980
|
||||
.. _On the Convergence of Adam and Beyond:
|
||||
https://openreview.net/forum?id=ryQu7f-RZ
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
lr=1e-3,
|
||||
betas=(0.9, 0.999),
|
||||
eps=1e-8,
|
||||
weight_decay=0,
|
||||
amsgrad=False,
|
||||
bnb_analysis='dynamic-blockwise',
|
||||
savedir=None
|
||||
):
|
||||
defaults = dict(
|
||||
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad
|
||||
)
|
||||
super(AnalysisAdam, self).__init__(params, defaults)
|
||||
self.analysis = bnb_analysis
|
||||
self.savedir = savedir
|
||||
|
||||
@property
|
||||
def supports_memory_efficient_fp16(self):
|
||||
return True
|
||||
|
||||
@property
|
||||
def supports_flat_params(self):
|
||||
return True
|
||||
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p_id, p in enumerate(group["params"]):
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data
|
||||
if grad.dtype in {torch.float16, torch.bfloat16}:
|
||||
grad = grad.float()
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError(
|
||||
"Adam does not support sparse gradients, please consider SparseAdam instead"
|
||||
)
|
||||
amsgrad = group.get("amsgrad", False)
|
||||
assert not amsgrad
|
||||
|
||||
p_data_fp32 = p.data
|
||||
if p.data.dtype in {torch.float16, torch.bfloat16}:
|
||||
p_data_fp32 = p_data_fp32.float()
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state["step"] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state["exp_avg"] = torch.zeros_like(p_data_fp32)
|
||||
# Exponential moving average of squared gradient values
|
||||
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
|
||||
state['abserrors'] = torch.zeros((256, 256), device=p_data_fp32.device)
|
||||
state['relerrors'] = torch.zeros((256, 256), device=p_data_fp32.device)
|
||||
state['counts'] = torch.zeros((256, 256), device=p_data_fp32.device)
|
||||
if amsgrad:
|
||||
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||
state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32)
|
||||
else:
|
||||
state["exp_avg"] = state["exp_avg"].to(p_data_fp32)
|
||||
state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32)
|
||||
if amsgrad:
|
||||
state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to(
|
||||
p_data_fp32
|
||||
)
|
||||
|
||||
state["step"] += 1
|
||||
beta1, beta2 = group["betas"]
|
||||
bias_correction1 = 1 - beta1 ** state["step"]
|
||||
bias_correction2 = 1 - beta2 ** state["step"]
|
||||
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1
|
||||
e = state['abserrors']
|
||||
rele = state['relerrors']
|
||||
counts = state['counts']
|
||||
|
||||
if group["weight_decay"] != 0:
|
||||
p_data_fp32.add_(
|
||||
p_data_fp32, alpha=-group["weight_decay"] * group["lr"]
|
||||
)
|
||||
|
||||
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
|
||||
if amsgrad:
|
||||
max_exp_avg_sq = state["max_exp_avg_sq"]
|
||||
|
||||
|
||||
# Decay the first and second moment running average coefficient
|
||||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||
|
||||
denom = exp_avg_sq.sqrt().add_(group["eps"])
|
||||
update_fp32 = exp_avg/denom
|
||||
|
||||
if p_data_fp32.numel() <= 8192 or p_data_fp32.numel() > 50000*1000:
|
||||
# embedding layer or too small
|
||||
p_data_fp32 += -step_size*update_fp32
|
||||
else:
|
||||
if self.analysis == 'dynamic-blockwise':
|
||||
code1 = F.create_dynamic_map(signed=True).to(p.device)
|
||||
code2 = F.create_dynamic_map(signed=False).to(p.device)
|
||||
C1, S1 = F.quantize_blockwise(exp_avg, code=code1)
|
||||
state1 = F.dequantize_blockwise(C1, S1)
|
||||
C2, S2 = F.quantize_blockwise(exp_avg_sq, code=code2)
|
||||
state2 = F.dequantize_blockwise(C2, S2)
|
||||
elif self.analysis == 'dynamic':
|
||||
code1 = F.create_dynamic_map(signed=True).to(p.device)
|
||||
code2 = F.create_dynamic_map(signed=False).to(p.device)
|
||||
C1, S1 = F.quantize(exp_avg, code=code1)
|
||||
state1 = F.dequantize(C1, S1)
|
||||
C2, S2 = F.quantize(exp_avg_sq, code=code2)
|
||||
state2 = F.dequantize(C2, S2)
|
||||
elif self.analysis == 'linear':
|
||||
code1 = F.create_linear_map(signed=True).to(p.device)
|
||||
code2 = F.create_linear_map(signed=False).to(p.device)
|
||||
C1, S1 = F.quantize(exp_avg, code=code1)
|
||||
state1 = F.dequantize(C1, S1)
|
||||
C2, S2 = F.quantize(exp_avg_sq, code=code2)
|
||||
state2 = F.dequantize(C2, S2)
|
||||
elif self.analysis == 'quantile':
|
||||
code1 = F.estimate_quantiles(exp_avg)
|
||||
code2 = F.estimate_quantiles(exp_avg_sq)
|
||||
C1 = F.quantize_no_absmax(exp_avg, code=code1)
|
||||
state1 = F.dequantize_no_absmax(C1, code1)
|
||||
C2 = F.quantize_no_absmax(exp_avg_sq, code=code2)
|
||||
state2 = F.dequantize_no_absmax(C2, code2)
|
||||
else:
|
||||
raise ValueError(f'Invalid analysis value: {self.analysis}!')
|
||||
|
||||
denom = state2.sqrt().add_(group["eps"])
|
||||
update_8bit = state1/denom
|
||||
|
||||
abserr = torch.abs(update_8bit-update_fp32)
|
||||
relerr = abserr/torch.abs(update_fp32+1e-6)
|
||||
|
||||
C1, C2 = C1.int(), C2.int()
|
||||
|
||||
F.histogram_scatter_add_2d(e, C1.int(), C2.int(), abserr)
|
||||
F.histogram_scatter_add_2d(rele, C1.int(), C2.int(), relerr)
|
||||
F.histogram_scatter_add_2d(counts, C1.int(), C2.int(), torch.ones_like(abserr))
|
||||
|
||||
p_data_fp32 += -step_size*update_fp32
|
||||
|
||||
|
||||
if not dist.is_initialized() or dist.get_rank() == 0:
|
||||
if self.savedir != '' and state['step'] % 100 == 0:
|
||||
if not os.path.exists(self.savedir): os.makedirs(self.savedir)
|
||||
shapestr = '_'.join([str(dim) for dim in p_data_fp32.shape])
|
||||
pathe = join(self.savedir, f'{p_id}_{shapestr}_abserr.pkl')
|
||||
pathrele = join(self.savedir, f'{p_id}_{shapestr}_relerr.pkl')
|
||||
pathcounts = join(self.savedir, f'{p_id}_{shapestr}_counts.pkl')
|
||||
torch.save(e, pathe)
|
||||
torch.save(rele, pathrele)
|
||||
torch.save(counts, pathcounts)
|
||||
|
||||
if p.data.dtype in {torch.float16, torch.bfloat16}:
|
||||
p.data.copy_(p_data_fp32)
|
||||
|
||||
|
||||
|
||||
return loss
|
||||
|
|
Loading…
Reference in New Issue
Block a user