# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer1State class Adagrad(Optimizer1State): def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if initial_accumulator_value != 0.0: raise ValueError("Initial accumulator value != 0.0 not supported!") if lr_decay != 0.0: raise ValueError("Lr Decay != 0.0 not supported!") super().__init__( "adagrad", params, lr, (0.0, 0.0), eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, ) class Adagrad8bit(Optimizer1State): def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10, optim_bits=8, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if initial_accumulator_value != 0.0: raise ValueError("Initial accumulator value != 0.0 not supported!") if lr_decay != 0.0: raise ValueError("Lr Decay != 0.0 not supported!") assert block_wise super().__init__( "adagrad", params, lr, (0.0, 0.0), eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, ) class Adagrad32bit(Optimizer1State): def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if initial_accumulator_value != 0.0: raise ValueError("Initial accumulator value != 0.0 not supported!") if lr_decay != 0.0: raise ValueError("Lr Decay != 0.0 not supported!") super().__init__( "adagrad", params, lr, (0.0, 0.0), eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, )