import pytest import torch from bitsandbytes.nn.triton_based_modules import SwitchBackLinear from bitsandbytes.nn import Linear8bitLt @pytest.mark.parametrize("vectorrize", [False, True]) def test_switchback(vectorrize): for dim in [83, 17, 128]: for batch in [13, 128, 256]: standard = torch.nn.Linear(dim, 4 * dim).cuda().half() print('vectorrize', vectorrize) switchback = SwitchBackLinear(dim, 4 * dim, vectorize=vectorrize).cuda().half() baseline = Linear8bitLt(dim, 4 * dim).cuda().half() switchback.weight.data.copy_(standard.weight) switchback.bias.data.copy_(standard.bias) baseline.weight.data.copy_(standard.weight) baseline.bias.data.copy_(standard.bias) x1 = torch.randn(batch, dim).cuda().half().requires_grad_(True) x2 = x1.clone().detach().requires_grad_(True) x3 = x1.clone().detach().requires_grad_(True) out_standard = standard(x1) (2**10 * out_standard.abs().mean()).backward() out_sb = switchback(x2) (2**10 * out_sb.abs().mean()).backward() out_baseline = baseline(x3) (2**10 * out_baseline.abs().mean()).backward() err_sb = (out_standard - out_sb).abs().mean() err_baseline = (out_standard - out_baseline).abs().mean() print('OUT', err_sb, err_baseline) assert err_sb < 2 * err_baseline err_sb = (standard.bias.grad - switchback.bias.grad).abs().mean() err_baseline = (standard.bias.grad - baseline.bias.grad).abs().mean() print('GW2', err_sb, err_baseline) assert err_sb < 2 * err_baseline err_sb = (standard.weight.grad - switchback.weight.grad).abs().mean() err_baseline = (standard.weight.grad - baseline.weight.grad).abs().mean() print('GW1', err_sb, err_baseline) assert err_sb < 2 * err_baseline err_sb = (x1.grad - x2.grad).abs().mean() err_baseline = (x1.grad - x3.grad).abs().mean() print('GX1', err_sb, err_baseline) assert err_sb < 2 * err_baseline