import matplotlib.pyplot as plt import pandas as pd import numpy as np import os import matplotlib.gridspec as gridspec cmap=plt.get_cmap('cool') if __name__ == '__main__': fig = plt.figure(tight_layout=True, figsize=(12,3.5)) gs = gridspec.GridSpec(1, 2) dims_to_consider = [1024, 1280, 1408, 1664, 2048, 4096] batch_size_for_plot1 = 32768 batch_sizes_for_plot2 = [2**14, 2**15, 2**16, 2**17] dims_to_xtick = [1024, 2048, 4096] logscale_plot1 = True ax = fig.add_subplot(gs[0, 0]) # TODO: change this to what you want. rdf = pd.read_json('speed_benchmark/info_a100_py2.jsonl', lines=True) df = rdf[rdf.batch_size == batch_size_for_plot1] # first plot the time occupied by different operations for k, marker, ls, color, name in [ ('standard_gx+standard_gw+standard_fwd', 's', '-', 'C2', 'Standard fp16 (sum of parts)'), ('x_quantize_rowwise+g_quantize_rowwise+w_quantize_global+w_quantize_global_transpose+standard_gw+global_fwd+global_bwd', 'o', '-', 'C4', 'SwitchBack int8 (sum of parts)'), ('standard_fwd', '^', '--', 'C2', 'Matmul XW (standard)'), ('standard_gw', '^', '-.', 'C2', 'Matmul GW (standard)'), ('standard_gx', '^', ':', 'gray', 'Matmul GX (both)'), ('global_fwd', '^', '--', 'C4', 'Int8 Matmul XW (switchback)'), ('global_bwd', '^', '-.', 'C4', 'Int8 Matmul GW (switchback)'), ('x_quantize_rowwise', 'P', '--', 'C4', 'Quantize rowwise X (switchback)'), ('g_quantize_rowwise', 'P', '-.', 'C4', 'Quantize rowwise G (switchback)'), ('w_quantize_global', '.', '--', 'C4', 'Quatnize global W (switchback)'), ('w_quantize_global_transpose', '.', '-.', 'C4', 'Quantize gloabl and\ntranspose W (switchback)'), ]: xs = [] ys = [] for embed_dim in dims_to_consider: # average over dim -> 4*dim and 4*dim -> dim df_ = df[df.dim_in == embed_dim] df_ = df_[df_.dim_out == embed_dim * 4] xs.append(embed_dim) y_ = 0 for k_ in k.split('+'): y_ += df_[k_].values[0] df_ = df[df.dim_in == embed_dim * 4] df_ = df_[df_.dim_out == embed_dim] for k_ in k.split('+'): y_ += df_[k_].values[0] ys.append(y_ * 0.5) ax.plot(xs, ys, color=color, label=name, marker=marker, markersize=5 if marker=='s' else 5, linestyle=ls, linewidth=2 if '+' in k else 1.) ax.set_xlabel('dim', fontsize=13) ax.set_ylabel('time (ms)', fontsize=13) ax.grid() ax.set_xscale('log') if logscale_plot1: ax.set_yscale('log') ax.tick_params(axis='x', labelsize=11) ax.tick_params(axis='y', labelsize=11) ax.set_xticks(dims_to_xtick) ax.set_xticklabels(dims_to_xtick) ax.set_xticks([], minor=True) leg = ax.legend(loc='upper center', bbox_to_anchor=(-0.64, 1.), ncol=1, fontsize=10) leg.get_texts()[0].set_fontweight('bold') leg.get_texts()[1].set_fontweight('bold') plt.subplots_adjust(left=0.1) ax.set_title(' Linear layer, batch * sequence length = 32k', fontsize=10, loc='left', y=1.05, pad=-20) ax = fig.add_subplot(gs[0, 1]) # now plot the % speedup for different batch sizes for j, batch_size in enumerate(batch_sizes_for_plot2): all_xs, all_ys = [], [] for k, marker, ls, color, name in [ ('standard_gx+standard_gw+standard_fwd', 's', '-', 'C2', 'Standard fp16 (total time)'), ('x_quantize_rowwise+g_quantize_rowwise+w_quantize_global+w_quantize_global_transpose+standard_gw+global_fwd+global_bwd', 'o', '-', 'C4', 'SwitchBack int8 (total time)'), ]: xs, ys = [], [] df = rdf[rdf.batch_size == batch_size] for embed_dim in dims_to_consider: df_ = df[df.dim_in == embed_dim] df_ = df_[df_.dim_out == embed_dim * 4] xs.append(embed_dim) y_ = 0 for k_ in k.split('+'): y_ += df_[k_].values[0] df_ = df[df.dim_in == embed_dim * 4] df_ = df_[df_.dim_out == embed_dim] for k_ in k.split('+'): y_ += df_[k_].values[0] ys.append(y_ * 0.5) all_xs.append(xs) all_ys.append(ys) color = cmap(j * 0.25) real_ys = [-((all_ys[1][i] - all_ys[0][i]) / all_ys[0][i]) * 100 for i in range(len(all_ys[0]))] markers = ['^', 'v', 'P', 'o'] ax.plot(all_xs[0], real_ys, color=color, label=f'batch * sequence length = {batch_size}', marker=markers[j], markersize=5 if marker=='s' else 5) ax.legend() ax.set_xlabel('dim', fontsize=13) ax.set_xscale('log') ax.grid() ax.set_ylabel(r'% speedup', fontsize=13) ax.tick_params(axis='x', labelsize=11) ax.tick_params(axis='y', labelsize=11) ax.set_xticks(dims_to_xtick) ax.set_xticklabels(dims_to_xtick) ax.set_xticks([], minor=True) ax.set_title(' Linear layer summary, varying dimensions', fontsize=10, loc='left', y=1.05, pad=-20) plt.savefig('speed_benchmark/plot_with_info.pdf', bbox_inches='tight')