import ctypes import os import shutil import time import uuid from itertools import product from os.path import join import pytest import torch import bitsandbytes as bnb import bitsandbytes.functional as F # import apex k = 20 def get_temp_dir(): path = f"/tmp/autoswap/{str(uuid.uuid4())}" os.makedirs(path, exist_ok=True) return path def rm_path(path): shutil.rmtree(path) str2bf16support = {} str2bf16support['adam8bit_blockwise'] = True str2optimizers = {} str2optimizers["adam_pytorch"] = (None, torch.optim.Adam, bnb.optim.Adam) # str2optimizers['adam_apex'] = (None, apex.optimizers.FusedAdam, bnb.optim.Adam) # str2optimizers['momentum_apex'] = (None, lambda pxx: apex.optimizers.FusedSGD(pxx, 0.01, 0.9), bnb.optim.Adam) str2optimizers["momentum_pytorch"] = ( None, lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), bnb.optim.Adam, ) str2optimizers["adam"] = (torch.optim.Adam, bnb.optim.Adam) str2optimizers["paged_adamw"] = (torch.optim.AdamW, bnb.optim.PagedAdamW) str2optimizers["paged_adam"] = (torch.optim.Adam, bnb.optim.PagedAdam) # str2optimizers['fused_adam'] = (apex.optimizers.FusedAdam, bnb.optim.Adam) str2optimizers["momentum"] = ( lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD(pxx, 0.01, 0.9, block_wise=False), ) str2optimizers["rmsprop"] = ( lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop(pxx, 0.01, 0.9, block_wise=False), ) str2optimizers["adam8bit"] = (torch.optim.Adam, lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=False)) str2optimizers["momentum8bit"] = ( lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=False), ) str2optimizers["rmsprop8bit"] = ( lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=False), ) str2optimizers["adam8bit_blockwise"] = (torch.optim.Adam, lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=True)) str2optimizers["paged_adamw8bit_blockwise"] = (torch.optim.AdamW, lambda pxx: bnb.optim.PagedAdamW8bit(pxx, block_wise=True)) str2optimizers["paged_adam8bit_blockwise"] = (torch.optim.Adam, lambda pxx: bnb.optim.PagedAdam8bit(pxx, block_wise=True)) str2optimizers["momentum8bit_blockwise"] = ( lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=True), ) str2optimizers["rmsprop8bit_blockwise"] = ( lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=True), ) str2statenames = {} str2statenames["adam"] = [("exp_avg", "state1"), ("exp_avg_sq", "state2")] str2statenames["paged_adamw"] = [("exp_avg", "state1"), ("exp_avg_sq", "state2")] str2statenames["paged_adam"] = [("exp_avg", "state1"), ("exp_avg_sq", "state2")] str2statenames["momentum"] = [("momentum_buffer", "state1")] str2statenames["lamb"] = [("exp_avg", "state1"), ("exp_avg_sq", "state2")] str2statenames["rmsprop"] = [("square_avg", "state1")] str2statenames["adam8bit"] = [("exp_avg", "state1", "qmap1", "max1"), ("exp_avg_sq", "state2", "qmap2", "max2")] str2statenames["lamb8bit"] = [("exp_avg", "state1", "qmap1", "max1"), ("exp_avg_sq", "state2", "qmap2", "max2")] str2statenames["adam8bit_blockwise"] = [("exp_avg", "state1", "qmap1", "absmax1"), ("exp_avg_sq", "state2", "qmap2", "absmax2")] str2statenames["paged_adam8bit_blockwise"] = [("exp_avg", "state1", "qmap1", "absmax1"), ("exp_avg_sq", "state2", "qmap2", "absmax2")] str2statenames["paged_adamw8bit_blockwise"] = [("exp_avg", "state1", "qmap1", "absmax1"), ("exp_avg_sq", "state2", "qmap2", "absmax2")] str2statenames["momentum8bit"] = [("momentum_buffer", "state1", "qmap1", "max1")] str2statenames["momentum8bit_blockwise"] = [("momentum_buffer", "state1", "qmap1", "absmax1")] str2statenames["rmsprop8bit"] = [("square_avg", "state1", "qmap1", "max1")] str2statenames["rmsprop8bit_blockwise"] = [("square_avg", "state1", "qmap1", "absmax1")] dim1 = [1024] dim2 = [32, 1024, 4097, 1] gtype = [torch.float32, torch.float16] optimizer_names = ["adam", "momentum", "rmsprop", 'paged_adamw', 'paged_adam'] values = list(product(dim1, dim2, gtype, optimizer_names)) names = ["dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer32bit(dim1, dim2, gtype, optim_name): if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 p2 = p1.clone() p1 = p1.float() torch_optimizer = str2optimizers[optim_name][0]([p1]) bnb_optimizer = str2optimizers[optim_name][1]([p2]) if gtype == torch.float32: atol, rtol = 1e-6, 1e-5 elif gtype == torch.bfloat16: atol, rtol = 1e-3, 1e-2 else: atol, rtol = 1e-4, 1e-3 for i in range(k): g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 p1.grad = g.clone().float() p2.grad = g.clone() bnb_optimizer.step() torch_optimizer.step() for name1, name2 in str2statenames[optim_name]: torch.testing.assert_close( torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2].cuda(), atol=atol, rtol=rtol, ) torch.testing.assert_close(p1, p2.float(), atol=atol, rtol=rtol) if i % (k // 5) == 0 and i > 0: path = get_temp_dir() torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt")) del bnb_optimizer bnb_optimizer = None bnb_optimizer = str2optimizers[optim_name][1]([p2]) bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt"))) rm_path(path) torch.testing.assert_close(p1, p2.float(), atol=atol, rtol=rtol) for name1, name2 in str2statenames[optim_name]: torch.testing.assert_close( torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol, ) if gtype != torch.float32: # the adam buffers should also be close because they are 32-bit # but the paramters can diverge because they are 16-bit # the difference grow larger and larger with each update # --> copy the state to keep weights close p1.data = p1.data.to(p2.dtype).float() p2.copy_(p1.data) torch.testing.assert_close(p1.to(p2.dtype), p2) if optim_name in ["lars", "lamb"]: assert bnb_optimizer.state[p2]["unorm_vec"] > 0.0 dim1 = [1024] dim2 = [32, 1024, 4097] gtype = [torch.float32, torch.float16] values = list(product(dim1, dim2, gtype)) names = ["dim1_{}_dim2_{}_gtype_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim2, gtype", values, ids=names) def test_global_config(dim1, dim2, gtype): if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1 p2 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1 p3 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1 mask = torch.rand_like(p2) < 0.1 beta1 = 0.9 beta2 = 0.999 lr = 0.001 eps = 1e-8 bnb.optim.GlobalOptimManager.get_instance().initialize() bnb.optim.GlobalOptimManager.get_instance().override_config( p3, "optim_bits", 8 ) bnb.optim.GlobalOptimManager.get_instance().register_parameters( [p1, p2, p3] ) p1 = p1.cuda() p2 = p2.cuda() p3 = p3.cuda() adam2 = bnb.optim.Adam([p1, p2, p3], lr, (beta1, beta2), eps) if gtype == torch.float32: atol, rtol = 1e-6, 1e-5 else: atol, rtol = 1e-4, 1e-3 for i in range(50): g1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001 g2 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001 g3 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001 p1.grad = g1 p2.grad = g2 p3.grad = g3 adam2.step() assert adam2.state[p3]["state1"].dtype == torch.uint8 assert adam2.state[p3]["state2"].dtype == torch.uint8 dim1 = [1024] dim2 = [32, 1024, 4097] gtype = [torch.float32, torch.float16, torch.bfloat16] optimizer_names = [ "adam8bit", "momentum8bit", "rmsprop8bit", "adam8bit_blockwise", "momentum8bit_blockwise", "rmsprop8bit_blockwise", ] values = list(product(dim1, dim2, gtype, optimizer_names)) names = [ "dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): if gtype == torch.bfloat16 and optim_name not in str2bf16support: return if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 p2 = p1.clone() p1 = p1.float() blocksize = 2048 torch_optimizer = str2optimizers[optim_name][0]([p1]) bnb_optimizer = str2optimizers[optim_name][1]([p2]) if gtype == torch.float32: atol, rtol = 3e-3, 1e-3 patol, prtol = 1e-5, 1e-3 elif gtype == torch.bfloat16: atol, rtol = 3e-3, 1e-3 patol, prtol = 1e-4, 1e-2 else: atol, rtol = 3e-3, 1e-3 patol, prtol = 1e-5, 1e-3 errors = [] relerrors = [] for i in range(100): g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 p1.grad = g.clone().float() p2.grad = g.clone() bnb_optimizer.step() torch_optimizer.step() torch.testing.assert_close(p1, p2.float(), atol=patol, rtol=prtol) dequant_states = [] for name1, name2, qmap, max_val in str2statenames[optim_name]: # print(bnb_optimizer.state[p2][max_val], name1) if "blockwise" in optim_name: s1 = F.dequantize_blockwise( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize, ) else: s1 = F.dequantize( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], ) num_not_close = ( torch.isclose( torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol ) == 0 ) #assert num_not_close.sum().item() < 20 dequant_states.append(s1.clone()) err = torch.abs(p1 - p2) relerr = err / torch.abs(p1) if g.dtype == torch.bfloat16: assert err.mean() < 0.00015 assert relerr.mean() < 0.0016 else: assert err.mean() < 0.00012 assert relerr.mean() < 0.0012 errors.append(err.mean().item()) relerrors.append(relerr.mean().item()) if i % 10 == 0 and i > 0: for (name1, name2, qmap, max_val), s in zip( str2statenames[optim_name], dequant_states ): s1cpy = s.clone() raws1cpy = bnb_optimizer.state[p2][name2].clone() qmap1 = bnb_optimizer.state[p2][qmap].clone() path = get_temp_dir() torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt")) del bnb_optimizer bnb_optimizer = None bnb_optimizer = str2optimizers[optim_name][1]([p2]) bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt"))) rm_path(path) torch.testing.assert_close(raws1cpy, bnb_optimizer.state[p2][name2]) torch.testing.assert_close(qmap1, bnb_optimizer.state[p2][qmap]) if "blockwise" in optim_name: s1 = F.dequantize_blockwise( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize, ) else: s1 = F.dequantize( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], ) torch.testing.assert_close(s1cpy, s1) num_not_close = (torch.isclose(torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol) == 0) assert num_not_close.sum().item() < 20 torch.testing.assert_close(p1, p2.float(), atol=patol, rtol=prtol) # the parameters diverge quickly. Here we keep them close # together so we can test against the Adam error p1.data = p1.data.to(gtype).float() p2.copy_(p1.data) torch.testing.assert_close(p1.to(gtype), p2) for (name1, name2, qmap, max_val), s in zip(str2statenames[optim_name], dequant_states): torch_optimizer.state[p1][name1].copy_(s.data) # print(sum(errors)/len(errors)) # print(sum(relerrors)/len(relerrors)) dim1 = [1024] dim2 = [32, 1024, 4097] gtype = [torch.float32] optim_bits = [32, 8] values = list(product(dim1, dim2, gtype, optim_bits)) names = [ "dim1_{}_dim2_{}_gtype_{}_optim_bits_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, gtype, optim_bits", values, ids=names) def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits): if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1 beta1 = 0.9 beta2 = 0.999 lr = 0.001 eps = 1e-8 p1 = p1.cuda() p2 = p1.clone() adam1 = bnb.optim.Adam([p1], lr, (beta1, beta2), eps, optim_bits=optim_bits) adam2 = bnb.optim.Adam( [p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5, ) gnorm_vec = torch.zeros(100).cuda() step = 0 for i in range(50): step += 1 g1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + ( 0.01 * i ) g2 = g1.clone() p2.grad = g2 current_gnorm, clip_val, gnorm_scale = F.percentile_clipping( g1, gnorm_vec, step, 5 ) g1 = (g1.float() * gnorm_scale).to(gtype) p1.grad = g1 adam1.step() adam2.step() # gnorm_scale is not deterministic (warp reductions), as such there can be slight differences in state if optim_bits == 32: torch.testing.assert_close(p1, p2) torch.testing.assert_close( adam1.state[p1]["state1"], adam2.state[p2]["state1"], atol=5e-5, rtol=1e-4, ) torch.testing.assert_close( adam1.state[p1]["state2"], adam2.state[p2]["state2"], atol=5e-5, rtol=1e-4, ) elif optim_bits == 8: torch.testing.assert_close(p1, p2, atol=1e-4, rtol=1e-3) torch.testing.assert_close( adam1.state[p1]["state1"], adam2.state[p2]["state1"], atol=2, rtol=1e-3, ) torch.testing.assert_close( adam1.state[p1]["state2"], adam2.state[p2]["state2"], atol=2, rtol=1e-3, ) adam1.state[p1]["state1"].copy_(adam2.state[p2]["state1"]) adam1.state[p1]["state2"].copy_(adam2.state[p2]["state2"]) if i % 10 == 0 and i > 0: path = get_temp_dir() torch.save(adam2.state_dict(), join(path, "opt.pt")) del adam2 adam2 = None adam2 = bnb.optim.Adam( [p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5, ) adam2.load_state_dict(torch.load(join(path, "opt.pt"))) dim1 = [4096] dim2 = [4096] gtype = [torch.float32, torch.float16] # optimizer_names = ['adam8bit_blockwise', 'adam8bit', 'lamb8bit'] # optimizer_names = ['adam8bit_blockwise', 'adam_apex', 'adam8bit', 'adam', 'adam_pytorch'] # optimizer_names = ['momentum_apex', 'momentum8bit', 'momentum_pytorch'] # optimizer_names = ['lamb_apex', 'lamb8bit'] # optimizer_names = ['lars_apex', 'lars8bit'] optimizer_names = ["adam8bit_blockwise", 'paged_adam8bit_blockwise', 'paged_adamw8bit_blockwise'] values = list(product(dim1, dim2, gtype, optimizer_names)) names = [ "dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_benchmark_blockwise(dim1, dim2, gtype, optim_name): if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 bnb_optimizer = str2optimizers[optim_name][1]([p1]) g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 p1.grad = g for i in range(k): if i == k // 5: # 100 iterations for burn-in torch.cuda.synchronize() t0 = time.time() bnb_optimizer.step() torch.cuda.synchronize() s = time.time() - t0 print("") params = (k - k // 5) * dim1 * dim2 print(optim_name, gtype, s / params) # assert s < 3.9