import math import torch import time import triton import triton.language as tl from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time # TODO: autotune this better. @triton.autotune( configs=[ triton.Config({}, num_stages=1), triton.Config({}, num_stages=2), triton.Config({}, num_stages=4), triton.Config({}, num_stages=8), triton.Config({}, num_stages=16), triton.Config({}, num_stages=1, num_warps=8), triton.Config({}, num_stages=2, num_warps=8), triton.Config({}, num_stages=4, num_warps=8), triton.Config({}, num_stages=8, num_warps=8), triton.Config({}, num_stages=16, num_warps=8), triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), ], key=['n_elements'] ) @triton.jit def _quantize_columnwise_nogroup_transpose( x_ptr, output_ptr, output_maxs, n_elements, M : tl.constexpr, N : tl.constexpr, BLOCK_SIZE: tl.constexpr, P2: tl.constexpr, ): pid = tl.program_id(axis=0) block_start = pid p2_arange = tl.arange(0, P2) p2_arange_mask = p2_arange < M arange = p2_arange * N offsets = block_start + arange x = tl.load(x_ptr + offsets, mask=p2_arange_mask) abs_x = tl.abs(x) max_val = tl.max(tl.where(p2_arange_mask, abs_x, 0), axis=0) output = tl.libdevice.llrint(127. * (x / max_val)) new_start = pid * M new_offsets = new_start + p2_arange tl.store(output_ptr + new_offsets, output, mask=p2_arange_mask) tl.store(output_maxs + pid, max_val) def quantize_columnwise_nogroup_transpose(x: torch.Tensor): M, N = x.shape output = torch.empty(N, M, device=x.device, dtype=torch.int8) output_maxs = torch.empty(x.shape[1], device=x.device, dtype=torch.float16) P2 = int(2 ** (math.ceil(math.log2(M)))) assert x.is_cuda and output.is_cuda n_elements = output.numel() grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) _quantize_columnwise_nogroup_transpose[grid](x, output, output_maxs, n_elements, M, N, BLOCK_SIZE=M, P2=P2) return output, output_maxs if __name__ == '__main__': torch.manual_seed(0) x = torch.randn(1280, 768).cuda().to(torch.float16) out = quantize_columnwise_nogroup_transpose(x) x_real = x.t().float() x_real_int8 = (127. * x_real / x_real.abs().max(dim=1, keepdim=True)[0]).round().to(torch.int8) maxs = x_real.abs().max(dim=1, keepdim=True)[0].half() #print(out[0][2,:]) print((out[0] == x_real_int8).float().mean()) print((out[1] == maxs[:, 0]).float().mean()) # print(out[0]) # print(out[1]) # print(out[0][2,:]) # print(x_real[2, :]) # print((out[0] != x_real).nonzero()) #import pdb; pdb.set_trace() # repeat = 16 # for _ in range(8): # out = quantize_columnwise_nogroup_transpose(x) # triton_graph = torch.cuda.CUDAGraph() # with torch.cuda.graph(triton_graph): # out = quantize_columnwise_nogroup_transpose(x) # triton_graph.replay() # torch.cuda.synchronize() # start = time.time() # for _ in range(repeat): # triton_graph.replay() # torch.cuda.synchronize() # end = time.time() # print(out[0]) # print(out[1]) # print(x / x.abs().max(dim=0, keepdim=True)[0]) # x_real = (127 * (x / x.abs().max(dim=0, keepdim=True)[0])).round().to(torch.int8) # max1 = out[1] # max2 = x.abs().max(0)[0] # print(max1, max2) # import pdb; pdb.set_trace() # print(torch.allclose(max1, max2)) # print(f"time: {(end - start) / repeat * 1000:.3f} ms")