# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch.optim import Optimizer from bitsandbytes.optim.optimizer import Optimizer1State class LARS(Optimizer1State): def __init__( self, params, lr, momentum=0, dampening=0, weight_decay=0, nesterov=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02, ): if momentum == 0: raise NotImplementedError( f"LARS without momentum is not supported!" ) super().__init__( "lars", params, lr, (momentum, dampening), 0.0, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False, ) class LARS8bit(Optimizer1State): def __init__( self, params, lr, momentum=0, dampening=0, weight_decay=0, nesterov=False, args=None, min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02, ): if momentum == 0: raise NotImplementedError( f"LARS without momentum is not supported!" ) super().__init__( "lars", params, lr, (momentum, dampening), 0.0, weight_decay, 8, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False, ) class LARS32bit(Optimizer1State): def __init__( self, params, lr, momentum=0, dampening=0, weight_decay=0, nesterov=False, args=None, min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02, ): if momentum == 0: raise NotImplementedError( f"LARS without momentum is not supported!" ) super().__init__( "lars", params, lr, (momentum, dampening), 0.0, weight_decay, 32, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False, ) class PytorchLARS(Optimizer): def __init__( self, params, lr=0.01, momentum=0, dampening=0, weight_decay=0, nesterov=False, max_unorm=0.02, ): if lr < 0.0: raise ValueError(f"Invalid learning rate: {lr}") if momentum < 0.0: raise ValueError(f"Invalid momentum value: {momentum}") if weight_decay < 0.0: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, max_unorm=max_unorm, ) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError( "Nesterov momentum requires a momentum and zero dampening" ) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault("nesterov", False) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] d_p_list = [] momentum_buffer_list = [] weight_decay = group["weight_decay"] momentum = group["momentum"] dampening = group["dampening"] nesterov = group["nesterov"] max_unorm = group["max_unorm"] lr = group["lr"] for p in group["params"]: if p.grad is None: continue state = self.state[p] d_p = p.grad if weight_decay != 0: d_p = d_p.add(param, alpha=weight_decay) if momentum != 0: buf = state.get("momentum_buffer", None) if buf is None: buf = torch.clone(d_p).detach() state["momentum_buffer"] = buf else: buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: update = d_p + buf * momentum else: update = buf update_scale = 1.0 if max_unorm > 0.0: assert p.dtype == torch.float32 pnorm = torch.norm(p.detach()) unorm = torch.norm(update) if unorm > max_unorm * pnorm: update_scale = max_unorm * pnorm / unorm p.add_(update, alpha=-lr * update_scale) return loss