// Copyright (c) Facebook, Inc. and its affiliates. // // This source code is licensed under the MIT license found in the // LICENSE file in the root directory of this source tree. #include #include "ops.cuh" #include "kernels.cuh" // #include #include // #include #include #include #include // #include using namespace BinSearch; using std::cout; using std::endl; void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n) { int threads = 512; int num_blocks = n/threads; num_blocks = n % threads == 0 ? num_blocks : num_blocks + 1; kHistogramScatterAdd2D<<>>(histogram, index1, index2, src, maxidx1, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); } template void estimateQuantiles(T *A, float *code, float offset, int n) { int num_blocks = n/4096; num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1; CUDA_CHECK_RETURN(hipMemset(code, 0, 256*sizeof(float))); kEstimateQuantiles<<>>(A, code, offset, std::numeric_limits::max(), n); CUDA_CHECK_RETURN(hipPeekAtLastError()); } void quantize(float *code, float *A, unsigned char *out, int n) { int num_blocks = n/1024; num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1; kQuantize<<>>(code, A, out, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); } void dequantize(float *code, unsigned char *A, float *out, int n) { int num_blocks = n/1024; num_blocks = n % 1024 == 0 ? num_blocks : num_blocks + 1; kDequantize<<>>(code, A, out, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); } template void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float *rand, int rand_offset, int blocksize, const int n) { int num_blocks = n/blocksize; num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1; if(STOCHASTIC == 1) assert(blocksize == 4096); if(blocksize == 4096) kQuantizeBlockwise<<>>(code, A, absmax, out, rand, rand_offset, n); else if(blocksize == 2048) kQuantizeBlockwise<<>>(code, A, absmax, out, rand, rand_offset, n); else if(blocksize == 1024) kQuantizeBlockwise<<>>(code, A, absmax, out, rand, rand_offset, n); else if(blocksize == 512) kQuantizeBlockwise<<>>(code, A, absmax, out, rand, rand_offset, n); else if(blocksize == 256) kQuantizeBlockwise<<>>(code, A, absmax, out, rand, rand_offset, n); else if(blocksize == 128) kQuantizeBlockwise<<>>(code, A, absmax, out, rand, rand_offset, n); else if(blocksize == 64) kQuantizeBlockwise<<>>(code, A, absmax, out, rand, rand_offset, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); } template void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int blocksize, const int n) { int num_blocks = n/blocksize; num_blocks = n % blocksize == 0 ? num_blocks : num_blocks + 1; if(blocksize == 4096) kDequantizeBlockwise<<>>(code, A, absmax, out, n); else if(blocksize == 2048) kDequantizeBlockwise<<>>(code, A, absmax, out, n); else if(blocksize == 1024) kDequantizeBlockwise<<>>(code, A, absmax, out, n); else if(blocksize == 512) kDequantizeBlockwise<<>>(code, A, absmax, out, n); else if(blocksize == 256) kDequantizeBlockwise<<>>(code, A, absmax, out, n); else if(blocksize == 128) kDequantizeBlockwise<<>>(code, A, absmax, out, n); else if(blocksize == 64) kDequantizeBlockwise<<>>(code, A, absmax, out, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); } template void optimizer32bit(T* g, T* p, float* state1, float* state2, float *unorm, float max_unorm, float param_norm, const float beta1, const float beta2, const float eps, const float weight_decay, const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n) { int num_blocks = n/4096; num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1; switch(OPTIMIZER) { case ADAM: if(max_unorm > 0.0f) { CUDA_CHECK_RETURN(hipMemset(unorm, 0, 1*sizeof(float))); kPreconditionOptimizer32bit2State<<>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); } kOptimizer32bit2State<<>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); break; case MOMENTUM: case RMSPROP: case ADAGRAD: if(max_unorm > 0.0f) { CUDA_CHECK_RETURN(hipMemset(unorm, 0, 1*sizeof(float))); kPreconditionOptimizer32bit1State<<>>(g, p, state1, unorm, beta1, eps, weight_decay, step, lr, gnorm_scale, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); } kOptimizer32bit1State<<>>(g, p, state1, unorm, max_unorm, param_norm, beta1, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); break; } } template void optimizerStatic8bit(T* p, T* g, unsigned char* state1, unsigned char* state2, float *unorm, float max_unorm, float param_norm, float beta1, float beta2, float eps, int step, float lr, float* quantiles1, float* quantiles2, float* max1, float* max2, float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale, int n) { int num_blocks = n/4096; num_blocks = n % 4096 == 0 ? num_blocks : num_blocks + 1; if(max_unorm > 0.0f){ CUDA_CHECK_RETURN(hipMemset(unorm, 0, 1*sizeof(float))); } switch(OPTIMIZER) { case ADAM: CUDA_CHECK_RETURN(hipMemset(new_max1, 0, 1*sizeof(float))); CUDA_CHECK_RETURN(hipMemset(new_max2, 0, 1*sizeof(float))); kPreconditionOptimizerStatic8bit2State<<>>(p, g, state1, state2, unorm, beta1, beta2, eps, step, quantiles1, quantiles2, max1, max2, new_max1, new_max2, gnorm_scale, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); kOptimizerStatic8bit2State<<>>(p, g, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr, quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); break; case MOMENTUM: case RMSPROP: case ADAGRAD: CUDA_CHECK_RETURN(hipMemset(new_max1, 0, 1*sizeof(float))); kPreconditionOptimizerStatic8bit1State<<>>(p, g, state1, unorm, beta1, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); kOptimizerStatic8bit1State<<>>(p, g, state1, unorm, max_unorm, param_norm, beta1, eps, step, lr, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); break; default: break; } } #define BLOCKSIZE_2STATE 2048 #define NUM_2STATE 8 #define BLOCKSIZE_1STATE 2048 #define NUM_1STATE 8 template void optimizerStatic8bitBlockwise(T* p, T* g, unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr, float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n) { int num_blocks = 0; switch(OPTIMIZER) { case ADAM: num_blocks = n/BLOCKSIZE_2STATE; num_blocks = n % BLOCKSIZE_2STATE == 0 ? num_blocks : num_blocks + 1; kOptimizerStatic8bit2StateBlockwise<<>>(p, g, state1, state2, beta1, beta2, eps, step, lr, quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); break; case MOMENTUM: case RMSPROP: case ADAGRAD: num_blocks = n/BLOCKSIZE_1STATE; num_blocks = n % BLOCKSIZE_1STATE == 0 ? num_blocks : num_blocks + 1; kOptimizerStatic8bit1StateBlockwise<<>>(p, g, state1, beta1, beta2, eps, step, lr, quantiles1, absmax1, weight_decay, gnorm_scale, skip_zeros, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); break; } } template void percentileClipping(T * g, float *gnorm_vec, int step, const int n) { int num_blocks = n/2048; num_blocks = n % 2048 == 0 ? num_blocks : num_blocks + 1; CUDA_CHECK_RETURN(hipMemset(&gnorm_vec[step % 100], 0, 1*sizeof(float))); kPercentileClipping<<>>(g, gnorm_vec, step, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); } void gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc) { cout << "" << endl; cout << "=============================================" << endl; cout << "ERROR: Your GPU does not support Int8 Matmul!" << endl; cout << "=============================================" << endl; cout << "" << endl; assert(false); return ; // const int falpha = 1; // const int fbeta = 0; // const void * alpha = &falpha; // const void * beta = &fbeta; // hipblasStatus_t status; // status = hipblasGemmEx(context->m_handle, // transposeA ? HIPBLAS_OP_T : HIPBLAS_OP_N, // transposeB ? HIPBLAS_OP_T : HIPBLAS_OP_N, // m, n, k, // alpha, A, HIPBLAS_R_8I, lda, B, HIPBLAS_R_8I, ldb, beta, // C, HIPBLAS_R_32I, ldc, // HIPBLAS_R_32I, CUBLAS_GEMM_DEFAULT_TENSOR_OP); // if (status != HIPBLAS_STATUS_SUCCESS) // { // std::cout << "CUBLAS ERROR: Status " << status << std::endl; // } } void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc, long long int strideA, long long int strideB, long long int strideC, int batchCount) { const int falpha = 1; const int fbeta = 0; const void * alpha = &falpha; const void * beta = &fbeta; hipblasStatus_t status; //cout << transposeA << transposeB << endl; //printf("%i %i %i\n", m,n,k); //printf("%i %i %i\n", lda,ldb,ldc); //printf("%i %i %i\n", strideA, strideB, strideC); //printf("%i\n", batchCount); status = hipblasGemmStridedBatchedEx(context->m_handle, transposeA ? HIPBLAS_OP_T : HIPBLAS_OP_N, transposeB ? HIPBLAS_OP_T : HIPBLAS_OP_N, m, n, k, alpha, A, HIPBLAS_R_8I, lda, (long long int)strideA, B, HIPBLAS_R_8I, ldb, (long long int)strideB, beta, C, HIPBLAS_R_32I, ldc, (long long int)strideC, batchCount, HIPBLAS_R_32I, HIPBLAS_GEMM_DEFAULT); if (status != HIPBLAS_STATUS_SUCCESS) { std::cout << "CUBLAS ERROR: Status " << status << std::endl; } } int roundoff(int v, int d) { return (v + d - 1) / d * d; } template int get_leading_dim(int dim1, int dim2) { switch(ORDER) { case ROW: return dim2; break; case COL: return dim1; break; case COL32: // 32*row tiles return dim1*32; break; case COL_TURING: return 32*roundoff(dim1, 8); break; case COL_AMPERE: // 32*32 tiles return 32*roundoff(dim1, 32); break; default: return 0; break; } } template int get_leading_dim(int dim1, int dim2); template int get_leading_dim(int dim1, int dim2); template int get_leading_dim(int dim1, int dim2); template void transform(cublasLtHandle_t ltHandle, T *A, T *out, int dim1, int dim2) { cout << "" << endl; cout << "=============================================" << endl; cout << "ERROR: Your GPU does not support Int8 Matmul!" << endl; cout << "=============================================" << endl; cout << "" << endl; assert(false); } template void transform(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2); template void transform(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2); template void transform(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2); template void transform(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2); template void transform(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2); template void transform(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2); template void transform(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2); template void transform(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2); template int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc) { cout << "" << endl; cout << "=============================================" << endl; cout << "ERROR: Your GPU does not support Int8 Matmul!" << endl; cout << "=============================================" << endl; cout << "" << endl; assert(false); return 0; } int fill_up_to_nearest_multiple(int value, int multiple) { return value + (value % multiple == 0 ? 0 : (multiple - (value % multiple))); } void dequant_mm_int32_fp16(int *A, float *rowStats, float *colStats, half *out, float* newRowStats, float* newcolStats, half *bias, int numRows, int numCols) { int threads = 512; int tileCols = fill_up_to_nearest_multiple(numCols, 32); int n = numRows*tileCols; int subtile_rows = 128; int tilesize = 32*subtile_rows; int num_blocks = numRows/subtile_rows; num_blocks += (numRows % subtile_rows == 0) ? 0 : 1; num_blocks = num_blocks*(tileCols/32); assert(threads <= tilesize); kdequant_mm_int32_fp16<4, 128, 512><<>>(A, rowStats, colStats, out, newRowStats, newcolStats, bias, numRows, numCols, tileCols, n); CUDA_CHECK_RETURN(hipPeekAtLastError()); } #define STATS_THREADS 64 #define STATS_ITEMS 4 #define STATS_ROWS 16 void getColRowStats(half * A, float *rowStats, float *colStats, int *nnz_count_row, float nnz_threshold, int rows, int cols) { int tile_cols = STATS_THREADS*STATS_ITEMS; int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols); int tiledRows = fill_up_to_nearest_multiple(rows, STATS_ROWS); int row_tiles = (tiledRows/STATS_ROWS); int col_tiles = (tiledCols/tile_cols); row_tiles = row_tiles > 0 ? row_tiles : 1; col_tiles = col_tiles > 0 ? col_tiles : 1; int num_blocks = row_tiles * col_tiles; if(nnz_threshold == 0.0) kgetColRowStats<<>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols); else if(nnz_threshold != 0.0) kgetColRowStats<<>>(A, rowStats, colStats, nnz_count_row, nnz_threshold, rows, cols, tiledRows, tiledCols); CUDA_CHECK_RETURN(hipPeekAtLastError()); } void doubleRowColQuant(half * A, float *rowStats, float *colStats, char *out_col_normed, char *out_row_normed, int *rowidx, int *colidx, half *val, int *nnz_block_ptr, float threshold, int rows, int cols) { int threads = 64; int items_per_thread = 4; int tile_cols = threads*items_per_thread; int tile_rows = 16; int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols); int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows); int row_tiles = (tiledRows/tile_rows); int col_tiles = (tiledCols/tile_cols); row_tiles = row_tiles > 0 ? row_tiles : 1; col_tiles = col_tiles > 0 ? col_tiles : 1; int num_blocks = row_tiles * col_tiles; if(threshold > 0.0f) kDoubleRowColQuant<64, 4, 16, 64*4, 1><<>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols); else kDoubleRowColQuant<64, 4, 16, 64*4, 0><<>>(A, rowStats, colStats, out_col_normed, out_row_normed, rowidx, colidx, val, nnz_block_ptr, threshold, rows, cols, tiledCols); CUDA_CHECK_RETURN(hipPeekAtLastError()); } template void transformRowToFormat(char * A, char *out, int rows, int cols) { int threads = 256; int items_per_thread = 8; // we load 128 column values per warp int tile_cols = 32*items_per_thread; int tile_rows = 32; int tiledCols = fill_up_to_nearest_multiple(cols, tile_cols); int tiledRows = fill_up_to_nearest_multiple(rows, tile_rows); int row_tiles = (tiledRows/tile_rows); int col_tiles = (tiledCols/tile_cols); row_tiles = row_tiles > 0 ? row_tiles : 1; col_tiles = col_tiles > 0 ? col_tiles : 1; int num_blocks = row_tiles * col_tiles; int outCols = fill_up_to_nearest_multiple(cols, 32); int outRows = fill_up_to_nearest_multiple(rows, 32); if(FORMAT == COL_TURING) { if(TRANSPOSE) outRows = fill_up_to_nearest_multiple(cols, 8); else outRows = fill_up_to_nearest_multiple(rows, 8); } else if(FORMAT == COL_AMPERE) { if(TRANSPOSE) outRows = fill_up_to_nearest_multiple(cols, 32); else outRows = fill_up_to_nearest_multiple(rows, 32); } else { if(TRANSPOSE) { outCols = fill_up_to_nearest_multiple(rows, 32); outRows = cols; } } kTransformRowToFormat<256, 8, 32, 32*8, TRANSPOSE, FORMAT><<>>(A, out, rows, cols, tiledCols, outRows, outCols); CUDA_CHECK_RETURN(hipPeekAtLastError()); } void spmm_coo(hipsparseHandle_t handle, int *A_rowidx, int *A_colidx, half *A_vals, int A_nnz, int A_rows, int A_cols, int B_cols, int ldb, half *B, int ldc, half* C, bool transposed_B) { cout << "" << endl; cout << "=============================================" << endl; cout << "ERROR: Your GPU does not support Int8 Matmul!" << endl; cout << "=============================================" << endl; cout << "" << endl; assert(false); return; } template void spmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB) { kspmm_coo_very_sparse_naive<<>>(max_count, max_idx, offset_rowidx, rowidx, colidx, values, B, out, dequant_stats, nnz, rowsA, rowsB, colsB); CUDA_CHECK_RETURN(hipPeekAtLastError()); } template void extractOutliers(char * A, int *idx, char *out, int idx_size, int rows, int cols) { int threads = 256; // we load 128 column values per warp int tiledCols = tiledCols = fill_up_to_nearest_multiple(cols, 32); int tiledRows = 0; int num_blocks = idx_size; if(FORMAT == COL_TURING) { tiledRows = fill_up_to_nearest_multiple(rows, 8); } else if(FORMAT == COL_AMPERE) { tiledRows = fill_up_to_nearest_multiple(rows, 32); } kExtractOutliers<<>>(A, idx, out, idx_size, rows, cols, tiledRows, tiledCols); CUDA_CHECK_RETURN(hipPeekAtLastError()); } //============================================================== // TEMPLATE DEFINITIONS //============================================================== template void extractOutliers(char * A, int *idx, char *out, int idx_size, int rows, int cols); template void extractOutliers(char * A, int *idx, char *out, int idx_size, int rows, int cols); template void spmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB); template void spmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, signed char *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB); template int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc); template int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc); template int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc); template int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc); template int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc); template int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc); template void transformRowToFormat(char * A, char *out, int rows, int cols); template void transformRowToFormat(char * A, char *out, int rows, int cols); template void transformRowToFormat(char * A, char *out, int rows, int cols); template void transformRowToFormat(char * A, char *out, int rows, int cols); template void transformRowToFormat(char * A, char *out, int rows, int cols); template void transformRowToFormat(char * A, char *out, int rows, int cols); template void estimateQuantiles(half *A, float *code, float offset, int n); template void estimateQuantiles(float *A, float *code, float offset, int n); template void quantizeBlockwise(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n); template void quantizeBlockwise(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n); template void quantizeBlockwise(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n); template void quantizeBlockwise(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n); template void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n); template void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n); #define MAKE_optimizer32bit(name, gtype) \ template void optimizer32bit(gtype* g, gtype* p, \ float* state1, float* state2, float* unorm, float max_unorm, float param_norm, \ const float beta1, const float beta2, const float eps, const float weight_decay, \ const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n); MAKE_optimizer32bit(ADAM, half) MAKE_optimizer32bit(ADAM, float) MAKE_optimizer32bit(MOMENTUM, half) MAKE_optimizer32bit(MOMENTUM, float) MAKE_optimizer32bit(RMSPROP, half) MAKE_optimizer32bit(RMSPROP, float) MAKE_optimizer32bit(ADAGRAD, half) MAKE_optimizer32bit(ADAGRAD, float) #define MAKE_optimizerStatic8bit(name, gtype) \ template void optimizerStatic8bit(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \ float *unorm, float max_unorm, float param_norm, \ float beta1, float beta2, \ float eps, int step, float lr, \ float* quantiles1, float* quantiles2, \ float* max1, float* max2, float* new_max1, float* new_max2, \ float weight_decay, \ const float gnorm_scale, int n); \ MAKE_optimizerStatic8bit(ADAM, half) MAKE_optimizerStatic8bit(ADAM, float) MAKE_optimizerStatic8bit(MOMENTUM, half) MAKE_optimizerStatic8bit(MOMENTUM, float) MAKE_optimizerStatic8bit(RMSPROP, half) MAKE_optimizerStatic8bit(RMSPROP, float) #define MAKE_optimizerStatic8bitBlockwise(gtype, optim_name) \ template void optimizerStatic8bitBlockwise(gtype* p, gtype* g, \ unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr, \ float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n); \ MAKE_optimizerStatic8bitBlockwise(half, ADAM); MAKE_optimizerStatic8bitBlockwise(float, ADAM); MAKE_optimizerStatic8bitBlockwise(half, MOMENTUM); MAKE_optimizerStatic8bitBlockwise(float, MOMENTUM); MAKE_optimizerStatic8bitBlockwise(half, RMSPROP); MAKE_optimizerStatic8bitBlockwise(float, RMSPROP); MAKE_optimizerStatic8bitBlockwise(half, ADAGRAD); MAKE_optimizerStatic8bitBlockwise(float, ADAGRAD); template void percentileClipping(float * g, float *gnorm_vec, int step, const int n); template void percentileClipping(half * g, float *gnorm_vec, int step, const int n);