import operator import warnings from dataclasses import dataclass from functools import reduce # Required in Python 3 import torch import bitsandbytes.functional as F from bitsandbytes.autograd._functions import MatmulLtState, GlobalOutlierPooler # math.prod not compatible with python < 3.8 def prod(iterable): return reduce(operator.mul, iterable, 1) tensor = torch.Tensor class MatMulFP8Mixed(torch.autograd.Function): # forward is the same, but we added the fallback for pre-turing GPUs # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") @staticmethod def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024, bsz2=1024): # default of pytorch behavior if inputs are empty ctx.is_empty = False if prod(A.shape) == 0: ctx.is_empty = True ctx.A = A ctx.B = B B_shape = B.shape if A.shape[-1] == B_shape[0]: return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device) else: return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device) # 1. Dequantize # 2. MatmulnN cA, state = F.quantize_blockwise(A, code=fw_code, blocksize=bsz) fp8A = F.dequantize_blockwise(cA, state, blocksize=bsz).to(A.dtype) cB, state = F.quantize(B.float(), code=fw_code) fp8B = F.dequantize(cB, state).to(B.dtype) output = torch.matmul(fp8A, fp8B) # output is half # 3. Save state ctx.fw_code = fw_code ctx.bw_code = bw_code ctx.bsz = bsz ctx.bsz2 = bsz2 ctx.dtype_A, ctx.dtype_B = A.dtype, B.dtype if any(ctx.needs_input_grad[:2]): # NOTE: we send back A, and re-quant. ctx.tensors = (A, fp8B) else: ctx.tensors = (None, None) return output @staticmethod def backward(ctx, grad_output): if ctx.is_empty: return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None, None, None, None req_gradA, req_gradB, _, _, _, _, _ = ctx.needs_input_grad A, B = ctx.tensors grad_A, grad_B = None, None # TODO: Fix blocksize to be output_dim cgrad_out, state = F.quantize_blockwise(grad_output, code=ctx.bw_code, blocksize=ctx.bsz2) fp8out = F.dequantize_blockwise(cgrad_out, state, blocksize=ctx.bsz2).to(grad_output.dtype) # cgrad_output_2, state_2 = F.quantize(grad_output.float(), code=ctx.bw_code) # fp8out_2 = F.dequantize(cgrad_output_2, state_2).to(grad_output.dtype) # grad_output_reshape = grad_output.reshape(-1, grad_output.shape[-1]).contiguous() # fp8grad_transpose, stategrad_transpose = F.vectorwise_quant(grad_output_reshape, dim=0, quant_type='vector') # fp8out_transpose = (fp8grad_transpose / 7) * stategrad_transpose # fp8out_transpose = fp8out_transpose.view(grad_output.shape[0], grad_output.shape[1], grad_output.shape[2]) # not supported by PyTorch. TODO: create work-around if req_gradA: grad_A = torch.matmul(fp8out, B.t().to(fp8out.dtype)).to(A.dtype) if req_gradB: if len(A.shape) == 3: At = A.transpose(2, 1).contiguous() else: At = A.transpose(1, 0).contiguous() # cA, state = F.quantize(At.float(), code=ctx.fw_code) # fp8At = F.dequantize(cA, state).to(A.dtype) grad_B = torch.matmul(At.to(grad_output.dtype), grad_output).to(B.dtype) return grad_A, grad_B, None, None, None, None, None class MatMulFP8Global(torch.autograd.Function): # forward is the same, but we added the fallback for pre-turing GPUs # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") @staticmethod def forward(ctx, A, B, out=None, fw_code=None, bw_code=None, bsz=1024, bsz2=1024): # default of pytorch behavior if inputs are empty ctx.is_empty = False if prod(A.shape) == 0: ctx.is_empty = True ctx.A = A ctx.B = B B_shape = B.shape if A.shape[-1] == B_shape[0]: return torch.empty(A.shape[:-1] + B_shape[1:], dtype=A.dtype, device=A.device) else: return torch.empty(A.shape[:-1] + B_shape[:1], dtype=A.dtype, device=A.device) # 1. Dequantize # 2. MatmulnN cA, state = F.quantize(A.float(), code=fw_code) fp8A = F.dequantize(cA, state).to(A.dtype) cB, state = F.quantize(B.float(), code=fw_code) fp8B = F.dequantize(cB, state).to(B.dtype) output = torch.matmul(fp8A, fp8B) # output is half # 3. Save state ctx.fw_code = fw_code ctx.bw_code = bw_code ctx.bsz = bsz ctx.bsz2 = bsz2 ctx.dtype_A, ctx.dtype_B = A.dtype, B.dtype if any(ctx.needs_input_grad[:2]): # NOTE: we send back A, and re-quant. ctx.tensors = (A, fp8B) else: ctx.tensors = (None, None) return output @staticmethod def backward(ctx, grad_output): if ctx.is_empty: return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, None, None, None, None req_gradA, req_gradB, _, _, _, _, _ = ctx.needs_input_grad A, B = ctx.tensors grad_A, grad_B = None, None # TODO: Fix blocksize to be output_dim cgrad_out, state = F.quantize(grad_output.float(), code=ctx.bw_code) fp8out = F.dequantize(cgrad_out, state).to(grad_output.dtype) # cgrad_output_2, state_2 = F.quantize(grad_output.float(), code=ctx.bw_code) # fp8out_2 = F.dequantize(cgrad_output_2, state_2).to(grad_output.dtype) # grad_output_reshape = grad_output.reshape(-1, grad_output.shape[-1]).contiguous() # fp8grad_transpose, stategrad_transpose = F.vectorwise_quant(grad_output_reshape, dim=0, quant_type='vector') # fp8out_transpose = (fp8grad_transpose / 7) * stategrad_transpose # fp8out_transpose = fp8out_transpose.view(grad_output.shape[0], grad_output.shape[1], grad_output.shape[2]) # not supported by PyTorch. TODO: create work-around if req_gradA: grad_A = torch.matmul(fp8out, B.t().to(fp8out.dtype)).to(A.dtype) if req_gradB: if len(A.shape) == 3: At = A.transpose(2, 1).contiguous() else: At = A.transpose(1, 0).contiguous() cA, state = F.quantize(At.float(), code=ctx.fw_code) fp8At = F.dequantize(cA, state).to(A.dtype) grad_B = torch.matmul(fp8At.to(fp8out.dtype), fp8out).to(B.dtype) return grad_A, grad_B, None, None, None, None, None class SwitchBackBnb(torch.autograd.Function): @staticmethod def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()): # default to pytorch behavior if inputs are empty ctx.is_empty = False if prod(A.shape) == 0: ctx.is_empty = True ctx.A = A ctx.B = B ctx.bias = bias if A.shape[-1] == B.shape[0]: return torch.empty(A.shape[:-1]+B.shape[1:], dtype=A.dtype, device=A.device) else: return torch.empty(A.shape[:-1]+B.shape[:1], dtype=A.dtype, device=A.device) # 1. Quantize A # 2. Quantize B # 3. Matmul # 4. Mixed-precision decomposition matmul # 5. Save state formatB = state.formatB input_shape = A.shape if state.outlier_pool is None: state.outlier_pool = GlobalOutlierPooler.get_instance() # Cast A to fp16 if A.dtype != torch.float16: warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization") # 1. Quantize A if len(A.shape) == 3: A = A.view(-1, A.shape[-1]).contiguous() CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant( A.to(torch.float16), threshold=state.threshold ) if state.threshold > 0.0 and coo_tensorA is not None: if state.has_fp16_weights: idx = torch.unique(coo_tensorA.colidx).long() CA[:, idx] = 0 CAt[:, idx] = 0 subA = A[:, idx] state.subB = B[:, idx].t().contiguous() state.idx = idx else: if state.CxB is None: # B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions # we also need to convert it to the turing/ampere format state.CxB, state.SB = F.transform(state.CB, to_order=formatB) else: #print('A shape', A.shape) if not state.has_fp16_weights and state.CxB is None: state.CxB, state.SB = F.transform(state.CB, to_order=formatB) subA = None # 2. Quantize B if state.has_fp16_weights: #print('B shape', B.shape) has_grad = True if (getattr(B, "grad", None) is not None) else False is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1) if is_transposed: B = B.contiguous() if (state.is_training and not has_grad) or state.CxB is None: state.reset_grads() ( CB, state.CBt, state.SCB, state.SCBt, coo_tensorB, ) = F.double_quant(B.to(torch.float16)) state.CxB, state.SB = F.transform(CB, to_order=formatB) else: has_grad = False if coo_tensorA is not None and not state.has_fp16_weights: # extract outliers outlier_idx = torch.unique(coo_tensorA.colidx) state.idx = outlier_idx # state.outlier_pool.add_outliers(outlier_idx, A.shape[-1]) # if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]: # # do not use pool for 2nd FFN layer # state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device) # else: # state.idx = outlier_idx outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int()) state.subB = ( (outliers * state.SCB.view(-1, 1) / 127.0) .t() .contiguous() .to(A.dtype) ) CA[:, state.idx.long()] = 0 CAt[:, state.idx.long()] = 0 subA = A[:, state.idx.long()] shapeB = state.SB[0] if len(input_shape) == 3: output_shape = (input_shape[0], input_shape[1], shapeB[0]) else: output_shape = (input_shape[0], shapeB[0]) # 3. Matmul C32A, SA = F.transform(CA, "col32") out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB) # we apply the fused bias here if bias is None or bias.dtype == torch.float16: output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias) output = output.to(A.dtype) else: # apply bias separately output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None) output = output.to(A.dtype).add_(bias) # 4. Mixed-precision decomposition matmul if coo_tensorA is not None and subA is not None: output += torch.matmul(subA, state.subB) # 5. Save state ctx.state = state ctx.formatB = formatB ctx.grad_shape = input_shape ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype if any(ctx.needs_input_grad[:2]): ctx.tensors = (CAt, subA, A) ctx.tensor_states = (SCAt, state.idx) else: ctx.tensors = [None, None, None] ctx.tensor_states = (None, None) ctx.save_for_backward(None, None) clone_func = torch.clone if len(output_shape) == 3 else lambda x : x return clone_func(output.view(output_shape)) @staticmethod def backward(ctx, grad_output): if ctx.is_empty: bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias)) return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad CAt, subA, A = ctx.tensors SCAt, idx = ctx.tensor_states formatB = ctx.formatB state = ctx.state grad_A = grad_B = grad_bias = None if req_gradBias: # compute grad_bias first before changing grad_output dtype grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias) # Cast grad_output to fp16 if len(grad_output.shape) == 3: grad_output = grad_output.reshape( -1, grad_output.shape[-1] ).contiguous() Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16)) if req_gradB: # print('back A shape', A.shape) # print('grad output t shape', grad_output.t().shape) grad_B = torch.matmul(grad_output.t(), A) if req_gradA: if state.CBt is not None: C32grad, Sgrad = F.transform(Cgrad, "col32") if state.CxBt is None: state.CxBt, state.SBt = F.transform( state.CBt, to_order=formatB, transpose=True ) # print('back B shape', state.CxBt.shape) # print('back grad shape', C32grad.shape) gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt) grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A) elif state.CB is not None: CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1. / 127.0)) grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A) else: raise Exception('State must contain either CBt or CB matrix for backward') return grad_A, grad_B, None, grad_bias, None def get_block_sizes(input_matrix, weight_matrix): input_features = input_matrix.shape[-1] output_features = (weight_matrix.shape[0] if weight_matrix.shape[1] == input_features else weight_matrix.shape[1]) array = [4096, 2048, 1024, 512, 256, 128, 64, 0] bsz, bsz2 = 1024, 1024 for i, k in enumerate(array): if input_features > array[i + 1]: bsz = k break for i, k in enumerate(array): if output_features > array[i + 1]: bsz2 = k break return bsz, bsz2 def matmul_fp8_global(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1, bsz2 : int = -1): if bsz == -1 or bsz2 == -1: bsz, bsz2 = get_block_sizes(A, B) return MatMulFP8Global.apply(A, B, out, fw_code, bw_code, bsz, bsz2) def matmul_fp8_mixed(A: tensor, B: tensor, fw_code: tensor, bw_code: tensor, out: tensor = None, bsz : int = -1, bsz2 : int = -1): if bsz == -1 or bsz2 == -1: bsz, bsz2 = get_block_sizes(A, B) return MatMulFP8Mixed.apply(A, B, out, fw_code, bw_code, bsz, bsz2) def switchback_bnb( A: tensor, B: tensor, out: tensor = None, state: MatmulLtState = None, threshold=0.0, bias=None ): state = state or MatmulLtState() if threshold > 0.0: state.threshold = threshold return SwitchBackBnb.apply(A, B, out, bias, state)