bitsandbytes-rocm/include/Algo-Direct-Common.h

342 lines
9.9 KiB
C++

#pragma once
#include <algorithm>
#include <limits>
#include <type_traits>
#include "AAlloc.h"
namespace BinSearch {
namespace Details {
namespace DirectAux {
#define SAFETY_MULTI_PASS true
template <typename T>
struct HResults
{
HResults(T h, double ratio, size_t n) : H(h), hRatio(ratio), nInc(n) {}
T H;
double hRatio;
size_t nInc;
};
#ifdef USE_FMA
template <Algos A> struct IsDirect { static const bool value = (A == Direct) || (A == DirectFMA); };
template <Algos A> struct IsDirect2 { static const bool value = (A == Direct2) || (A == Direct2FMA); };
template <Algos A> struct IsDirectCache { static const bool value = (A == DirectCache) || (A == DirectCacheFMA); };
#else
template <Algos A> struct IsDirect { static const bool value = (A == Direct); };
template <Algos A> struct IsDirect2 { static const bool value = (A == Direct2); };
template <Algos A> struct IsDirectCache { static const bool value = (A == DirectCache); };
#endif
// general definition
template <Algos A, typename T, typename Enable = void>
struct BucketElem
{
FORCE_INLINE void set( uint32 b, const T *)
{
m_b = b;
}
FORCE_INLINE uint32 index() const { return m_b; }
private:
uint32 m_b;
};
// specialization for DirectCache methods
template <typename T> struct MatchingIntType;
template <> struct MatchingIntType<double> { typedef uint64 type; };
template <> struct MatchingIntType<float> { typedef uint32 type; };
template <Algos A, typename T>
struct BucketElem<A, T, typename std::enable_if< IsDirectCache<A>::value >::type >
{
typedef typename MatchingIntType<T>::type I;
void set(uint32 b, const T *xi)
{
u.u.x = xi[b];
u.u.b = b;
}
FORCE_INLINE I index() const { return u.u.b; }
FORCE_INLINE T x() const { return u.u.x; }
private:
union {
double dummy;
struct
{
T x;
I b;
} u;
} u;
};
template <bool UseFMA, unsigned char Gap, typename T>
struct DirectTraits
{
static void checkH(T scaler, T x0, T xN)
{
T Dn = xN - x0;
T ifmax = Dn * scaler;
myassert((ifmax < std::numeric_limits<uint32>::max() - (Gap - 1)),
"Problem unfeasible: index size exceeds uint32 capacity:"
<< " D[N] =" << Dn
<< ", H =" << scaler
<< ", H D[n] =" << ifmax << "\n"
);
}
FORCE_INLINE static uint32 f(T scaler, T x0, T z)
{
T tmp = scaler * (z - x0);
#ifdef USE_SSE2
return ftoi(FVec1<SSE,T>(tmp));
#else
return static_cast<uint32>(tmp);
#endif
}
template <InstrSet I>
FORCE_INLINE static typename FTOITraits<I, T>::vec_t f(const FVec<I, T>& scaler, const FVec<I, T>& x0, const FVec<I, T>& z)
{
return ftoi(scaler*(z-x0));
}
static T cst0(T scaler, T x0)
{
return x0;
}
};
#ifdef USE_FMA
template <unsigned char Gap, typename T>
struct DirectTraits<true,Gap,T>
{
typedef FVec1<SSE, T> fVec1;
static void checkH(T scaler, T H_Times_x0, T xN)
{
union {
typename FVec1<SSE, T>::vec_t v;
T s;
} ifmax;
ifmax.v = mulSub(fVec1(scaler), fVec1(xN), fVec1(H_Times_x0));
myassert((ifmax.s < std::numeric_limits<uint32>::max() - (Gap - 1)),
"Problem unfeasible: index size exceeds uint32 capacity:"
<< " H X[0] =" << H_Times_x0
<< ", H =" << scaler
<< ", X[N] =" << xN
<< ", H X[N] - H X[0] =" << ifmax.s << "\n"
);
}
FORCE_INLINE static uint32 f(T scaler, T Hx0, T xi)
{
return ftoi(mulSub(fVec1(scaler), fVec1(xi), fVec1(Hx0)));
}
template <InstrSet I>
FORCE_INLINE static typename FTOITraits<I,T>::vec_t f(const FVec<I,T>& scaler, const FVec<I, T>& H_Times_X0, const FVec<I, T>& z)
{
return ftoi(mulSub(scaler, z, H_Times_X0));
}
static T cst0(T scaler, T x0)
{
return scaler*x0;
}
};
#endif
template <unsigned char Gap, typename T, Algos A>
struct DirectInfo
{
static const bool UseFMA = (A == DirectFMA) || (A == Direct2FMA) || (A == DirectCacheFMA);
typedef DirectTraits<UseFMA, Gap, T> fun_t;
typedef BucketElem<A,T> bucket_t;
typedef AlignedVec<bucket_t> bucketvec_t;
struct Data {
Data() : buckets(0), xi(0), scaler(0), cst0(0) {}
Data( const T *x // for Direct must persist if xws=NULL
, uint32 n
, T H
, bucket_t *bws // assumed to gave size nb, as computed below
, T *xws = NULL // assumed to have size (n+Gap-1). Optional for Direct, unused for DirectCache, required for DirectGap
)
: buckets(bws)
, scaler(H)
, cst0(fun_t::cst0(H, x[0]))
{
myassert(((bws != NULL) && (isAligned(bws,64))), "bucket pointer not allocated or incorrectly aligned");
uint32 nb = 1 + fun_t::f(H, cst0, x[n-1]);
const uint32 npad = Gap-1;
const uint32 n_sz = n + npad; // size of padded vector
if (xws) {
myassert(isAligned(xws,8), "x pointer not allocated or incorrectly aligned");
std::fill_n(xws, npad, x[0]); // pad in front with x[0]
std::copy(x, x+n, xws + npad);
xi = xws;
}
else {
myassert(Gap==1, "if Gap>1 then X workspace must be provided");
xi = x;
}
populateIndex(bws, nb, xi, n_sz, scaler, cst0);
}
const bucket_t *buckets;
const T *xi;
T scaler;
T cst0; // could be x0 or (scaler*x0), depending if we are using FMA or not
} data;
static T growStep(T H)
{
T step;
T P = next(H);
while ((step = P - H) == 0)
P = next(P);
return step;
}
static HResults<T> computeH(const T *px, uint32 nx)
{
myassert((nx > Gap), "Array X too small");
myassert(((Gap == 1) || (Gap == 2)), "Only tested for these values of Gap");
const T x0 = px[0];
const T xN = px[nx-1];
const T range = xN - x0;
myassert((range < std::numeric_limits<T>::max()), "range too large");
// check that D_i are strictly increasing and compute minimum value D_{i+Offset}-D_i
T deltaDMin = range;
for (uint32 i = Gap; i < nx; ++i) {
T Dnew = px[i] - x0;
T Dold = px[i - Gap] - x0;
myassert((Dnew > Dold),
"Problem unfeasible: D_i sequence not strictly increasing"
<< " X[" << 0 << "]=" << x0
<< " X[" << i - Gap << "]=" << px[i - Gap]
<< " X[" << i << "]=" << px[i]
<< "\n"
);
T deltaD = Dnew - Dold;
if (deltaD < deltaDMin)
deltaDMin = deltaD;
}
// initial guess for H
const T H0 = T(1.0) / deltaDMin;
T H = H0;
T cst0 = fun_t::cst0(H, x0);
fun_t::checkH(H, cst0, xN);
// adjust H by trial and error until succeed
size_t nInc = 0;
bool modified = false;
size_t npasses = 0;
T step = growStep(H);
uint32 seg_already_checked_from = nx;
do {
myassert((npasses++ < 2), "verification failed\n");
// if there has been an increase, then check only up to that point
uint32 last_seg_to_be_checked = seg_already_checked_from - 1;
modified = false;
uint32 inew = 0;
for (uint32 i = Gap; i <= last_seg_to_be_checked; ++i) {
uint32 iold = fun_t::f(H, cst0, px[i-Gap]);
uint32 inew = fun_t::f(H, cst0, px[i]);
while (inew == iold) {
seg_already_checked_from = i;
last_seg_to_be_checked = nx-1; // everything needs to be checked
modified = true;
H = H + step;
step *= 2;
// recalculate all constants and indices
cst0 = fun_t::cst0(H, x0);
fun_t::checkH(H, cst0, xN);
iold = fun_t::f(H, cst0, px[i - Gap]);
inew = fun_t::f(H, cst0, px[i]);
}
}
} while (SAFETY_MULTI_PASS && modified);
return HResults<T>(H, (((double)H) / H0) - 1.0, nInc);
}
static void populateIndex(BucketElem<A, T> *buckets, uint32 index_size, const T *px, uint32 x_size, T scaler, T cst0)
{
for (uint32 i = x_size-1, b = index_size-1, j=0; ; --i) {
uint32 idx = fun_t::f(scaler, cst0, px[i]);
while (b > idx) { // in the 1st iteration it is j=0 but this condition is always false
buckets[b].set( j, px );
--b;
}
if (Gap==1 || b == idx) { // if Gap==1, which is known at compile time, the check b==idx is redundant
j = i - (Gap-1); // subtracting (Gap-1) points to the index of the first X-element to check
buckets[b].set(j, px);
if (b-- == 0)
break;
}
}
}
DirectInfo(const Data& d)
: data(d)
{
}
DirectInfo(const T* px, const uint32 n)
{
HResults<T> res = computeH(px, n);
#ifdef PAPER_TEST
nInc = res.nInc;
hRatio = res.hRatio;
#endif
const uint32 npad = Gap-1;
const uint32 n_sz = n + npad; // size of padded vector
if (npad)
xi.resize(n_sz);
T H = res.H;
T cst0 = fun_t::cst0(H, px[0]);
const uint32 maxIndex = fun_t::f(H, cst0, px[n-1]);
buckets.resize(maxIndex + 1);
data = Data(px, n, H, buckets.begin(), (npad? xi.begin(): NULL));
}
private:
bucketvec_t buckets;
AlignedVec<T,8> xi;
#ifdef PAPER_TEST
public:
double hRatio;
size_t nInc;
#endif
};
} // namespace DirectAux
} // namespace Details
} // namespace BinSearch