bitsandbytes-rocm/include/Algo-Direct2.h
2023-08-05 02:12:14 +02:00

306 lines
11 KiB
C++

#pragma once
#include "Algo-Direct-Common.h"
namespace BinSearch {
namespace Details {
template <typename T, Algos A>
struct AlgoScalarBase<T, A, typename std::enable_if<DirectAux::IsDirect2<A>::value>::type> : DirectAux::DirectInfo<2, T, A>
{
private:
typedef DirectAux::DirectInfo<2, T, A> base_t;
static const size_t Offset=2;
public:
AlgoScalarBase(const T* x, const uint32 n)
: base_t(x, n)
{
}
FORCE_INLINE uint32 scalar(T z) const
{
const T* px = base_t::data.xi;
const uint32* buckets = reinterpret_cast<const uint32 *>(base_t::data.buckets);
uint32 bidx = base_t::fun_t::f(base_t::data.scaler, base_t::data.cst0, z);
uint32 iidx = buckets[bidx];
px += iidx;
if (z < *px)
--iidx;
if (z < *(px+1))
--iidx;
return iidx;
}
};
template <InstrSet I, typename T, Algos A>
struct AlgoVecBase<I, T, A, typename std::enable_if<DirectAux::IsDirect2<A>::value>::type> : AlgoScalarBase<T, A>
{
static const uint32 nElem = sizeof(typename InstrFloatTraits<I, T>::vec_t) / sizeof(T);
typedef FVec<I, T> fVec;
typedef IVec<SSE, T> i128;
struct Constants
{
fVec vscaler;
fVec vcst0;
IVec<I, T> one;
};
private:
typedef AlgoScalarBase<T, A> base_t;
FORCE_INLINE
//NO_INLINE
void resolve(const FVec<SSE, float>& vz, const IVec<SSE, float>& bidx, uint32 *pr) const
{
union U {
__m128i vec;
uint32 ui32[4];
} u;
const uint32* buckets = reinterpret_cast<const uint32 *>(base_t::data.buckets);
const float *xi = base_t::data.xi;
// read indices t
const double *p3 = reinterpret_cast<const double *>(&xi[(u.ui32[3] = buckets[bidx.get3()])]);
const double *p2 = reinterpret_cast<const double *>(&xi[(u.ui32[2] = buckets[bidx.get2()])]);
const double *p1 = reinterpret_cast<const double *>(&xi[(u.ui32[1] = buckets[bidx.get1()])]);
const double *p0 = reinterpret_cast<const double *>(&xi[(u.ui32[0] = buckets[bidx.get0()])]);
#if 0
// read pairs ( X(t-1), X(t) )
__m128 xp3 = _mm_castpd_ps(_mm_load_sd(p3));
__m128 xp2 = _mm_castpd_ps(_mm_load_sd(p2));
__m128 xp1 = _mm_castpd_ps(_mm_load_sd(p1));
__m128 xp0 = _mm_castpd_ps(_mm_load_sd(p0));
// build:
// { X(t(0)-1), X(t(1)-1), X(t(2)-1), X(t(3)-1) }
// { X(t(0)), X(t(1)), X(t(2)), X(t(3)) }
__m128 h13 = _mm_shuffle_ps(xp1, xp3, (1 << 2) + (1 << 6));
__m128 h02 = _mm_shuffle_ps(xp0, xp2, (1 << 2) + (1 << 6));
__m128 u01 = _mm_unpacklo_ps(h02, h13);
__m128 u23 = _mm_unpackhi_ps(h02, h13);
__m128 vxm = _mm_shuffle_ps(u01, u23, (0) + (1 << 2) + (0 << 4) + (1 << 6));
__m128 vxp = _mm_shuffle_ps(u01, u23, (2) + (3 << 2) + (2 << 4) + (3 << 6));
#else
__m128 xp23 = _mm_castpd_ps(_mm_set_pd(*p3, *p2));
__m128 xp01 = _mm_castpd_ps(_mm_set_pd(*p1, *p0));
__m128 vxm = _mm_shuffle_ps(xp01, xp23, (0) + (2 << 2) + (0 << 4) + (2 << 6));
__m128 vxp = _mm_shuffle_ps(xp01, xp23, (1) + (3 << 2) + (1 << 4) + (3 << 6));
#endif
IVec<SSE, float> i(u.vec);
IVec<SSE, float> vlem = operator< (vz,vxm);
IVec<SSE, float> vlep = operator< (vz,vxp);
i = i + vlem + vlep;
i.store(pr);
}
FORCE_INLINE
//NO_INLINE
void resolve(const FVec<SSE, double>& vz, const IVec<SSE, float>& bidx, uint32 *pr) const
{
const uint32* buckets = reinterpret_cast<const uint32 *>(base_t::data.buckets);
const double *xi = base_t::data.xi;
uint32 b1 = buckets[bidx.get1()];
uint32 b0 = buckets[bidx.get0()];
const double *p1 = &xi[b1];
const double *p0 = &xi[b0];
// read pairs ( X(t-1), X(t) )
__m128d vx1 = _mm_loadu_pd(p1);
__m128d vx0 = _mm_loadu_pd(p0);
// build:
// { X(t(0)-1), X(t(1)-1) }
// { X(t(0)), X(t(1)) }
__m128d vxm = _mm_shuffle_pd(vx0, vx1, 0);
__m128d vxp = _mm_shuffle_pd(vx0, vx1, 3);
IVec<SSE, double> i(b1, b0);
IVec<SSE, double> vlem = operator< (vz, vxm);
IVec<SSE, double> vlep = operator< (vz, vxp);
i = i + vlem + vlep;
union {
__m128i vec;
uint32 ui32[4];
} u;
u.vec = i;
pr[0] = u.ui32[0];
pr[1] = u.ui32[2];
}
#ifdef USE_AVX
FORCE_INLINE
//NO_INLINE
void resolve(const FVec<AVX, float>& vz, const IVec<AVX, float>& bidx, uint32 *pr) const
{
const uint32* buckets = reinterpret_cast<const uint32 *>(base_t::data.buckets);
const float *xi = base_t::data.xi;
#if 0 // use gather instructions
IVec<AVX,float> idxm;
idxm.setidx(buckets, bidx);
__m256i z = _mm256_setzero_si256();
IVec<AVX,float> minusone = _mm256_cmpeq_epi32(z,z);
IVec<AVX,float> idxp = idxm - minusone;
FVec<AVX, float> vxm = _mm256_i32gather_ps(xi, idxm, sizeof(float));
FVec<AVX, float> vxp = _mm256_i32gather_ps(xi, idxp, sizeof(float));
IVec<AVX, float> ip = idxm;
#else // do not use gather instrucions
union U {
__m256i vec;
uint32 ui32[8];
} u;
// read indices t
const double *p7 = reinterpret_cast<const double *>(&xi[(u.ui32[7] = buckets[bidx.get7()])]);
const double *p6 = reinterpret_cast<const double *>(&xi[(u.ui32[6] = buckets[bidx.get6()])]);
const double *p5 = reinterpret_cast<const double *>(&xi[(u.ui32[5] = buckets[bidx.get5()])]);
const double *p4 = reinterpret_cast<const double *>(&xi[(u.ui32[4] = buckets[bidx.get4()])]);
const double *p3 = reinterpret_cast<const double *>(&xi[(u.ui32[3] = buckets[bidx.get3()])]);
const double *p2 = reinterpret_cast<const double *>(&xi[(u.ui32[2] = buckets[bidx.get2()])]);
const double *p1 = reinterpret_cast<const double *>(&xi[(u.ui32[1] = buckets[bidx.get1()])]);
const double *p0 = reinterpret_cast<const double *>(&xi[(u.ui32[0] = buckets[bidx.get0()])]);
#if 0 // perform 8 loads in double precision
// read pairs ( X(t-1), X(t) )
__m128 xp7 = _mm_castpd_ps(_mm_load_sd(p7));
__m128 xp6 = _mm_castpd_ps(_mm_load_sd(p6));
__m128 xp5 = _mm_castpd_ps(_mm_load_sd(p5));
__m128 xp4 = _mm_castpd_ps(_mm_load_sd(p4));
__m128 xp3 = _mm_castpd_ps(_mm_load_sd(p3));
__m128 xp2 = _mm_castpd_ps(_mm_load_sd(p2));
__m128 xp1 = _mm_castpd_ps(_mm_load_sd(p1));
__m128 xp0 = _mm_castpd_ps(_mm_load_sd(p0));
// build:
// { X(t(0)-1), X(t(1)-1), X(t(2)-1), X(t(3)-1) }
// { X(t(0)), X(t(1)), X(t(2)), X(t(3)) }
__m128 h57 = _mm_shuffle_ps(xp5, xp7, (1 << 2) + (1 << 6)); // F- F+ H- H+
__m128 h46 = _mm_shuffle_ps(xp4, xp6, (1 << 2) + (1 << 6)); // E- E+ G- G+
__m128 h13 = _mm_shuffle_ps(xp1, xp3, (1 << 2) + (1 << 6)); // B- B+ D- D+
__m128 h02 = _mm_shuffle_ps(xp0, xp2, (1 << 2) + (1 << 6)); // A- A+ C- C+
__m128 u01 = _mm_unpacklo_ps(h02, h13); // A- B- A+ B+
__m128 u23 = _mm_unpackhi_ps(h02, h13); // C- D- C+ D+
__m128 u45 = _mm_unpacklo_ps(h46, h57); // E- F- E+ F+
__m128 u67 = _mm_unpackhi_ps(h46, h57); // G- H- G+ H+
__m128 abcdm = _mm_shuffle_ps(u01, u23, (0) + (1 << 2) + (0 << 4) + (1 << 6)); // A- B- C- D-
__m128 abcdp = _mm_shuffle_ps(u01, u23, (2) + (3 << 2) + (2 << 4) + (3 << 6)); // A+ B+ C+ D+
__m128 efghm = _mm_shuffle_ps(u45, u67, (0) + (1 << 2) + (0 << 4) + (1 << 6)); // E- F- G- H-
__m128 efghp = _mm_shuffle_ps(u45, u67, (2) + (3 << 2) + (2 << 4) + (3 << 6)); // E+ F+ G+ H+
FVec<AVX, float> vxp = _mm256_insertf128_ps(_mm256_castps128_ps256(abcdm), efghm, 1);
FVec<AVX, float> vxm = _mm256_insertf128_ps(_mm256_castps128_ps256(abcdp), efghp, 1);
IVec<AVX, float> ip(u.vec);
#else // use __mm256_set_pd
// read pairs ( X(t-1), X(t) )
__m256 x0145 = _mm256_castpd_ps(_mm256_set_pd(*p5, *p4, *p1, *p0)); // { x0(t-1), x0(t), x1(t-1), x1(t), x4(t-1), x4(t), x5(t-1), x5(t) }
__m256 x2367 = _mm256_castpd_ps(_mm256_set_pd(*p7, *p6, *p3, *p2)); // { x2(t-1), x2(t), x3(t-1), x3(t), x6(t-1), x6(t), x7(t-1), x7(t) }
// { x0(t-1), x1(t-1), x2(t-1), 3(t-1, x4(t-1), x5(t-1), x6(t-1), xt(t-1) }
FVec<AVX, float> vxm = _mm256_shuffle_ps(x0145, x2367, 0 + (2 << 2) + (0 << 4) + (2 << 6) );
// { x0(t), x1(t), x2(t), 3(t, x4(t), x5(t), x6(t), xt(t) }
FVec<AVX, float> vxp = _mm256_shuffle_ps(x0145, x2367, 1 + (3 << 2) + (1 << 4) + (3 << 6) );
IVec<AVX, float> ip(u.vec);
#endif
#endif
IVec<AVX, float> vlem = operator< (vz, vxm);
IVec<AVX, float> vlep = operator< (vz, vxp);
ip = ip + vlem + vlep;
ip.store(pr);
}
FORCE_INLINE
//NO_INLINE
void resolve(const FVec<AVX, double>& vz, const IVec<SSE, float>& bidx, uint32 *pr) const
{
union {
__m256i vec;
uint64 ui64[4];
} u;
const uint32* buckets = reinterpret_cast<const uint32 *>(base_t::data.buckets);
const double *xi = base_t::data.xi;
// read indices t
const double *p3 = &xi[(u.ui64[3] = buckets[bidx.get3()])];
const double *p2 = &xi[(u.ui64[2] = buckets[bidx.get2()])];
const double *p1 = &xi[(u.ui64[1] = buckets[bidx.get1()])];
const double *p0 = &xi[(u.ui64[0] = buckets[bidx.get0()])];
// read pairs ( X(t-1), X(t) )
__m128d xp3 = _mm_loadu_pd(p3);
__m128d xp2 = _mm_loadu_pd(p2);
__m128d xp1 = _mm_loadu_pd(p1);
__m128d xp0 = _mm_loadu_pd(p0);
// build:
// { X(t(0)-1), X(t(1)-1), X(t(2)-1), X(t(3)-1) }
// { X(t(0)), X(t(1)), X(t(2)), X(t(3)) }
__m256d x02 = _mm256_insertf128_pd(_mm256_castpd128_pd256(xp0), xp2, 1);
__m256d x13 = _mm256_insertf128_pd(_mm256_castpd128_pd256(xp1), xp3, 1);
FVec<AVX, double> vxm = _mm256_unpacklo_pd(x02,x13);
FVec<AVX, double> vxp = _mm256_unpackhi_pd(x02,x13);
// __m128d h01m = _mm_shuffle_pd(xp0, xp1, 0);
// __m128d h23m = _mm_shuffle_pd(xp2, xp3, 0);
// __m128d h01p = _mm_shuffle_pd(xp0, xp1, 3);
// __m128d h23p = _mm_shuffle_pd(xp2, xp3, 3);
// FVec<AVX, double> vxm = _mm256_insertf128_pd(_mm256_castpd128_pd256(h01m), h23m, 1);
// FVec<AVX, double> vxp = _mm256_insertf128_pd(_mm256_castpd128_pd256(h01p), h23p, 1);
IVec<AVX, double> i(u.vec);
IVec<AVX, double> vlem = operator< (vz,vxm);
IVec<AVX, double> vlep = operator< (vz,vxp);
i = i + vlem + vlep;
i.extractLo32s().store(pr);
}
#endif
public:
AlgoVecBase(const T* x, const uint32 n) : base_t(x, n) {}
void initConstants(Constants& cst) const
{
cst.vscaler.setN(base_t::data.scaler);
cst.vcst0.setN(base_t::data.cst0);
cst.one.setN(uint32(1));
}
void vectorial(uint32 *pr, const T *pz, const Constants& cst) const
{
fVec vz(pz);
resolve(vz, base_t::fun_t::f(cst.vscaler, cst.vcst0, vz), pr);
}
};
} // namespace Details
} // namespace BinSearch