116 lines
4.7 KiB
Python
116 lines
4.7 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
import torch
|
|
|
|
from torch.optim import Optimizer
|
|
from bitsandbytes.optim.optimizer import Optimizer1State
|
|
|
|
class LARS(Optimizer1State):
|
|
def __init__(self, params, lr, momentum=0, dampening=0,
|
|
weight_decay=0, nesterov=False, optim_bits=32, args=None,
|
|
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
|
|
if momentum == 0:
|
|
raise NotImplementError(f'LARS without momentum is not supported!')
|
|
super(LARS, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
|
|
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
|
|
|
|
class LARS8bit(Optimizer1State):
|
|
def __init__(self, params, lr, momentum=0, dampening=0,
|
|
weight_decay=0, nesterov=False, args=None,
|
|
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
|
|
if momentum == 0:
|
|
raise NotImplementError(f'LARS without momentum is not supported!')
|
|
super(LARS8bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
|
|
weight_decay, 8, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
|
|
|
|
class LARS32bit(Optimizer1State):
|
|
def __init__(self, params, lr, momentum=0, dampening=0,
|
|
weight_decay=0, nesterov=False, args=None,
|
|
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
|
|
if momentum == 0:
|
|
raise NotImplementError(f'LARS without momentum is not supported!')
|
|
super(LARS32bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
|
|
weight_decay, 32, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
|
|
|
|
|
|
class PytorchLARS(Optimizer):
|
|
def __init__(self, params, lr=0.01, momentum=0, dampening=0,
|
|
weight_decay=0, nesterov=False, max_unorm=0.02):
|
|
if lr < 0.0:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if momentum < 0.0:
|
|
raise ValueError("Invalid momentum value: {}".format(momentum))
|
|
if weight_decay < 0.0:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
|
|
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
|
|
weight_decay=weight_decay, nesterov=nesterov, max_unorm=max_unorm)
|
|
if nesterov and (momentum <= 0 or dampening != 0):
|
|
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
|
|
super(PytorchLARS, self).__init__(params, defaults)
|
|
|
|
def __setstate__(self, state):
|
|
super(PytorchLARS, self).__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault('nesterov', False)
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Args:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
params_with_grad = []
|
|
d_p_list = []
|
|
momentum_buffer_list = []
|
|
weight_decay = group['weight_decay']
|
|
momentum = group['momentum']
|
|
dampening = group['dampening']
|
|
nesterov = group['nesterov']
|
|
max_unorm = group['max_unorm']
|
|
lr = group['lr']
|
|
|
|
for p in group['params']:
|
|
if p.grad is None: continue
|
|
|
|
state = self.state[p]
|
|
d_p = p.grad
|
|
if weight_decay != 0:
|
|
d_p = d_p.add(param, alpha=weight_decay)
|
|
|
|
if momentum != 0:
|
|
buf = state.get('momentum_buffer', None)
|
|
|
|
if buf is None:
|
|
buf = torch.clone(d_p).detach()
|
|
state['momentum_buffer']= buf
|
|
else:
|
|
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
|
|
|
|
if nesterov:
|
|
update = d_p + buf*momentum
|
|
else:
|
|
update = buf
|
|
|
|
update_scale = 1.0
|
|
if max_unorm > 0.0:
|
|
assert p.dtype == torch.float32
|
|
pnorm = torch.norm(p.detach())
|
|
unorm = torch.norm(update)
|
|
if unorm > max_unorm*pnorm:
|
|
update_scale = max_unorm*pnorm/unorm
|
|
|
|
p.add_(update, alpha=-lr*update_scale)
|
|
|
|
return loss
|