493 lines
21 KiB
Python
493 lines
21 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
import torch
|
|
import bitsandbytes.functional as F
|
|
|
|
from copy import deepcopy
|
|
from itertools import chain
|
|
from collections import defaultdict, abc as container_abcs
|
|
|
|
class MockArgs(object):
|
|
def __init__(self, initial_data):
|
|
for key in initial_data:
|
|
setattr(self, key, initial_data[key])
|
|
|
|
|
|
class GlobalOptimManager(object):
|
|
_instance = None
|
|
|
|
def __init__(self):
|
|
raise RuntimeError('Call get_instance() instead')
|
|
|
|
def initialize(self):
|
|
self.pid2config = {}
|
|
self.index2config = {}
|
|
self.optimizer = None
|
|
self.uses_config_override = False
|
|
self.module_weight_config_triple = []
|
|
|
|
@classmethod
|
|
def get_instance(cls):
|
|
if cls._instance is None:
|
|
cls._instance = cls.__new__(cls)
|
|
cls._instance.initialize()
|
|
return cls._instance
|
|
|
|
def register_parameters(self, params):
|
|
param_groups = list(params)
|
|
if not isinstance(param_groups[0], dict):
|
|
param_groups = [{'params': param_groups}]
|
|
|
|
for group_index, group in enumerate(param_groups):
|
|
for p_index, p in enumerate(group['params']):
|
|
if id(p) in self.pid2config:
|
|
self.index2config[(group_index, p_index)] = self.pid2config[id(p)]
|
|
|
|
def override_config(self, parameters, key=None, value=None, key_value_dict=None):
|
|
'''
|
|
Overrides initial optimizer config for specific parameters.
|
|
|
|
The key-values of the optimizer config for the input parameters are overidden
|
|
This can be both, optimizer parameters like "betas", or "lr" or it can be
|
|
8-bit specific paramters like "optim_bits", "percentile_clipping".
|
|
|
|
Parameters
|
|
----------
|
|
parameters : torch.Tensor or list(torch.Tensors)
|
|
The input parameters.
|
|
key : str
|
|
The hyperparamter to override.
|
|
value : object
|
|
The value for the hyperparamters.
|
|
key_value_dict : dict
|
|
A dictionary with multiple key-values to override.
|
|
'''
|
|
self.uses_config_override = True
|
|
if isinstance(parameters, torch.nn.Parameter):
|
|
parameters = [parameters]
|
|
if isinstance(parameters, torch.Tensor):
|
|
parameters = [parameters]
|
|
if key is not None and value is not None:
|
|
assert key_value_dict is None
|
|
key_value_dict = {key: value}
|
|
|
|
if key_value_dict is not None:
|
|
for p in parameters:
|
|
if id(p) in self.pid2config:self.pid2config[id(p)].update(key_value_dict)
|
|
else: self.pid2config[id(p)] = key_value_dict
|
|
|
|
def register_module_override(self, module, param_name, config):
|
|
self.module_weight_config_triple.append((module, param_name, config))
|
|
|
|
|
|
|
|
class Optimizer8bit(torch.optim.Optimizer):
|
|
|
|
def __init__(self, params, defaults, optim_bits=32):
|
|
super(Optimizer8bit, self).__init__(params, defaults)
|
|
self.initialized = False
|
|
self.name2qmap = {}
|
|
|
|
self.mng = GlobalOptimManager.get_instance()
|
|
self.non_castable_tensor_keys = set(
|
|
['qmap1', 'qmap2',
|
|
'max1', 'max2',
|
|
'new_max1', 'new_max2',
|
|
'state1', 'state2',
|
|
'gnorm_vec', 'absmax1', 'absmax2',
|
|
'unorm_vec'])
|
|
|
|
if optim_bits == 8: self.fill_qmap()
|
|
|
|
def fill_qmap(self):
|
|
self.name2qmap['dynamic'] = F.create_dynamic_map(signed=True)
|
|
self.name2qmap['udynamic'] = F.create_dynamic_map(signed=False)
|
|
|
|
def __setstate__(self, state):
|
|
super(Optimizer8bit, self).__setstate__(state)
|
|
|
|
|
|
def load_state_dict(self, state_dict):
|
|
r"""Loads the optimizer state.
|
|
|
|
Args:
|
|
state_dict (dict): optimizer state. Should be an object returned
|
|
from a call to :meth:`state_dict`.
|
|
"""
|
|
# deepcopy, to be consistent with module API
|
|
state_dict = deepcopy(state_dict)
|
|
# Validate the state_dict
|
|
groups = self.param_groups
|
|
saved_groups = state_dict['param_groups']
|
|
|
|
if len(groups) != len(saved_groups):
|
|
raise ValueError("loaded state dict has a different number of "
|
|
"parameter groups")
|
|
param_lens = (len(g['params']) for g in groups)
|
|
saved_lens = (len(g['params']) for g in saved_groups)
|
|
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
|
|
raise ValueError("loaded state dict contains a parameter group "
|
|
"that doesn't match the size of optimizer's group")
|
|
|
|
# Update the state
|
|
id_map = {old_id: p for old_id, p in
|
|
zip(chain.from_iterable((g['params'] for g in saved_groups)),
|
|
chain.from_iterable((g['params'] for g in groups)))}
|
|
|
|
def cast(param, value):
|
|
r"""Make a deep copy of value, casting all tensors to device of param."""
|
|
if isinstance(value, torch.Tensor):
|
|
# Floating-point types are a bit special here. They are the only ones
|
|
# that are assumed to always match the type of params.
|
|
if param.is_floating_point() and value.dtype != torch.uint8:
|
|
value = value.to(param.dtype)
|
|
return value
|
|
elif isinstance(value, dict):
|
|
for k, v in value.items():
|
|
if k in self.non_castable_tensor_keys:
|
|
value[k] = v.to(param.device)
|
|
else:
|
|
value[k] = cast(param, v)
|
|
|
|
return value
|
|
elif isinstance(value, container_abcs.Iterable):
|
|
return type(value)(cast(param, v) for v in value)
|
|
else:
|
|
return value
|
|
|
|
# Copy state assigned to params (and cast tensors to appropriate types).
|
|
# State that is not assigned to params is copied as is (needed for
|
|
# backward compatibility).
|
|
state = defaultdict(dict)
|
|
for k, v in state_dict['state'].items():
|
|
if k in id_map:
|
|
param = id_map[k]
|
|
state[param] = cast(param, v)
|
|
else:
|
|
state[k] = v
|
|
|
|
# Update parameter groups, setting their 'params' value
|
|
def update_group(group, new_group):
|
|
new_group['params'] = group['params']
|
|
return new_group
|
|
param_groups = [
|
|
update_group(g, ng) for g, ng in zip(groups, saved_groups)]
|
|
self.__setstate__({'state': state, 'param_groups': param_groups})
|
|
|
|
def to_gpu(self):
|
|
for gindex, group in enumerate(self.param_groups):
|
|
for pindex, p in enumerate(group['params']):
|
|
if p in self.state:
|
|
values = self.state[p]
|
|
for k, v in values.items():
|
|
if isinstance(v, torch.Tensor):
|
|
self.state[p][k] = v.to(p.device)
|
|
|
|
def check_overrides(self):
|
|
for module, attr, config in self.mng.module_weight_config_triple:
|
|
pmodule = getattr(module, attr)
|
|
assert pmodule is not None
|
|
assert isinstance(pmodule, torch.Tensor) or isinstance(pmodule, torch.Parameter)
|
|
found = False
|
|
for gindex, group in enumerate(self.param_groups):
|
|
if found: break
|
|
for pindex, p in enumerate(group['params']):
|
|
if found: break
|
|
if id(p) == id(pmodule):
|
|
# found the matching parameter
|
|
# init override
|
|
self.mng.pid2config[id(p)] = config
|
|
self.mng.index2config[(gindex, pindex)] = self.mng.pid2config[id(p)]
|
|
found = True
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Arguments:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
overflows = []
|
|
|
|
if not self.initialized:
|
|
self.check_overrides()
|
|
self.to_gpu() # needed for fairseq pure fp16 training
|
|
self.initialized = True
|
|
|
|
for gindex, group in enumerate(self.param_groups):
|
|
for pindex, p in enumerate(group['params']):
|
|
if p.grad is None:
|
|
continue
|
|
state = self.state[p]
|
|
if len(state) == 0:
|
|
self.init_state(group, p, gindex, pindex)
|
|
|
|
self.update_step(group, p, gindex, pindex)
|
|
|
|
return loss
|
|
|
|
def get_config(self, gindex, pindex, group):
|
|
config = {}
|
|
config['betas'] = group['betas']
|
|
config['eps'] = group['eps']
|
|
config['weight_decay'] = group['weight_decay']
|
|
config['lr'] = group['lr']
|
|
config['optim_bits'] = self.args.optim_bits
|
|
config['min_8bit_size'] = self.args.min_8bit_size
|
|
config['percentile_clipping'] = self.args.percentile_clipping
|
|
config['block_wise'] = self.args.block_wise
|
|
config['max_unorm'] = self.args.max_unorm
|
|
config['skip_zeros'] = self.args.skip_zeros
|
|
|
|
if (gindex, pindex) in self.mng.index2config:
|
|
config.update(self.mng.index2config[(gindex, pindex)])
|
|
return config
|
|
|
|
def init_state(self, group, p, gindex, pindex):
|
|
raise NotImplementedError(f'init_state method needs to be overidden')
|
|
|
|
def update_step(self, group, p, gindex, pindex):
|
|
raise NotImplementedError(f'The update_step method needs to be overidden')
|
|
|
|
class Optimizer2State(Optimizer8bit):
|
|
def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
|
|
weight_decay=0.0, optim_bits=32, args=None,
|
|
min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0,
|
|
skip_zeros=False):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if isinstance(betas, str):
|
|
# format: '(beta1, beta2)'
|
|
betas = betas.replace('(', '').replace(')', '').strip().split(',')
|
|
betas = [float(b) for b in betas]
|
|
for i in range(len(betas)):
|
|
if not 0.0 <= betas[i] < 1.0:
|
|
raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}")
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
defaults = dict(lr=lr, betas=betas, eps=eps,
|
|
weight_decay=weight_decay)
|
|
super(Optimizer2State, self).__init__(params, defaults, optim_bits)
|
|
|
|
if args is None:
|
|
args = {}
|
|
args['optim_bits'] = optim_bits
|
|
args['percentile_clipping'] = 100
|
|
args['min_8bit_size'] = min_8bit_size
|
|
args['percentile_clipping'] = percentile_clipping
|
|
args['block_wise'] = block_wise
|
|
args['max_unorm'] = max_unorm
|
|
args['skip_zeros'] = skip_zeros
|
|
|
|
self.args = MockArgs(args)
|
|
else:
|
|
self.args = args
|
|
|
|
self.optimizer_name = optimizer_name
|
|
|
|
@torch.no_grad()
|
|
def init_state(self, group, p, gindex, pindex):
|
|
config = self.get_config(gindex, pindex, group)
|
|
|
|
if config['optim_bits'] == 32:
|
|
dtype = torch.float32
|
|
elif config['optim_bits'] == 8:
|
|
dtype = torch.uint8
|
|
else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}')
|
|
|
|
if p.numel() < config['min_8bit_size']: dtype = torch.float32
|
|
|
|
state = self.state[p]
|
|
state['step'] = 0
|
|
|
|
if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096):
|
|
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
|
|
state['state2'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
|
|
elif dtype == torch.uint8:
|
|
if state['step'] == 0:
|
|
if 'dynamic' not in self.name2qmap: self.fill_qmap()
|
|
self.name2qmap['dynamic'] = self.name2qmap['dynamic'].to(p.device)
|
|
self.name2qmap['udynamic'] = self.name2qmap['udynamic'].to(p.device)
|
|
|
|
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
|
|
state['qmap1'] = self.name2qmap['dynamic']
|
|
|
|
state['state2'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
|
|
state['qmap2'] = self.name2qmap['udynamic']
|
|
|
|
if config['block_wise']:
|
|
n = p.numel()
|
|
blocks = n//2048
|
|
blocks += 1 if n % 2048 > 0 else 0
|
|
|
|
state['absmax1'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
|
|
state['absmax2'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
|
|
else:
|
|
state['max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
|
|
state['new_max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
|
|
state['max2'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
|
|
state['new_max2'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
|
|
|
|
if config['percentile_clipping'] < 100:
|
|
state['gnorm_vec'] = torch.zeros((100,), device=p.device)
|
|
|
|
if config['max_unorm'] > 0.0:
|
|
state['unorm_vec'] = torch.zeros((1,), device=p.device)
|
|
|
|
@torch.no_grad()
|
|
def update_step(self, group, p, gindex, pindex):
|
|
state = self.state[p]
|
|
grad = p.grad
|
|
|
|
config = self.get_config(gindex, pindex, group)
|
|
|
|
state['step'] += 1
|
|
step = state['step']
|
|
|
|
if config['percentile_clipping'] < 100:
|
|
current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(grad, state['gnorm_vec'], step, config['percentile_clipping'])
|
|
else:
|
|
gnorm_scale = 1.0
|
|
|
|
if state['state1'].dtype == torch.float:
|
|
F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'],
|
|
state['state2'], config['betas'][1], config['weight_decay'], gnorm_scale,
|
|
state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'], skip_zeros=config['skip_zeros'])
|
|
|
|
elif state['state1'].dtype == torch.uint8 and not config['block_wise']:
|
|
F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], state['state2'], config['betas'][0], config['betas'][1],
|
|
config['eps'], step, config['lr'],
|
|
state['qmap1'], state['qmap2'], state['max1'], state['max2'], state['new_max1'], state['new_max2'],
|
|
config['weight_decay'], gnorm_scale=gnorm_scale,
|
|
unorm_vec=state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'])
|
|
|
|
# swap maxes
|
|
state['max1'], state['new_max1'] = state['new_max1'], state['max1']
|
|
state['max2'], state['new_max2'] = state['new_max2'], state['max2']
|
|
elif state['state1'].dtype == torch.uint8 and config['block_wise']:
|
|
F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], state['state2'], config['betas'][0], config['betas'][1],
|
|
config['eps'], step, config['lr'],
|
|
state['qmap1'], state['qmap2'], state['absmax1'], state['absmax2'],
|
|
config['weight_decay'], gnorm_scale=gnorm_scale, skip_zeros=config['skip_zeros'])
|
|
|
|
|
|
class Optimizer1State(Optimizer8bit):
|
|
def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8,
|
|
weight_decay=0.0, optim_bits=32, args=None,
|
|
min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0,
|
|
skip_zeros=False):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
for i in range(len(betas)):
|
|
if not 0.0 <= betas[i] < 1.0:
|
|
raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}")
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
defaults = dict(lr=lr, betas=betas, eps=eps,
|
|
weight_decay=weight_decay)
|
|
super(Optimizer1State, self).__init__(params, defaults, optim_bits)
|
|
|
|
if args is None:
|
|
args = {}
|
|
args['optim_bits'] = optim_bits
|
|
args['percentile_clipping'] = 100
|
|
args['min_8bit_size'] = min_8bit_size
|
|
args['percentile_clipping'] = percentile_clipping
|
|
args['block_wise'] = block_wise
|
|
args['max_unorm'] = max_unorm
|
|
args['skip_zeros'] = skip_zeros
|
|
|
|
self.args = MockArgs(args)
|
|
else:
|
|
self.args = args
|
|
|
|
self.optimizer_name = optimizer_name
|
|
|
|
@torch.no_grad()
|
|
def init_state(self, group, p, gindex, pindex):
|
|
config = self.get_config(gindex, pindex, group)
|
|
|
|
if config['optim_bits'] == 32:
|
|
dtype = torch.float32
|
|
elif config['optim_bits'] == 8:
|
|
dtype = torch.uint8
|
|
else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}')
|
|
|
|
if p.numel() < config['min_8bit_size']: dtype = torch.float32
|
|
|
|
state = self.state[p]
|
|
state['step'] = 0
|
|
|
|
if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096):
|
|
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
|
|
elif dtype == torch.uint8:
|
|
if state['step'] == 0:
|
|
if 'dynamic' not in self.name2qmap: self.fill_qmap()
|
|
self.name2qmap['dynamic'] = self.name2qmap['dynamic'].to(p.device)
|
|
|
|
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
|
|
state['qmap1'] = self.name2qmap['dynamic']
|
|
|
|
if config['block_wise']:
|
|
n = p.numel()
|
|
blocks = n//2048
|
|
blocks += 1 if n % 2048 > 0 else 0
|
|
|
|
state['absmax1'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
|
|
else:
|
|
state['max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
|
|
state['new_max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
|
|
|
|
if config['percentile_clipping'] < 100:
|
|
state['gnorm_vec'] = torch.zeros((100,), device=p.device)
|
|
|
|
if config['max_unorm'] > 0.0:
|
|
state['unorm_vec'] = torch.zeros((1,), device=p.device)
|
|
|
|
|
|
@torch.no_grad()
|
|
def update_step(self, group, p, gindex, pindex):
|
|
state = self.state[p]
|
|
grad = p.grad
|
|
|
|
config = self.get_config(gindex, pindex, group)
|
|
|
|
state['step'] += 1
|
|
step = state['step']
|
|
|
|
if config['percentile_clipping'] < 100:
|
|
current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(grad, state['gnorm_vec'], step, config['percentile_clipping'])
|
|
else:
|
|
gnorm_scale = 1.0
|
|
|
|
if state['state1'].dtype == torch.float:
|
|
F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'],
|
|
None, 0.0, config['weight_decay'], gnorm_scale,
|
|
state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'],
|
|
skip_zeros=config['skip_zeros'])
|
|
|
|
elif state['state1'].dtype == torch.uint8 and not config['block_wise']:
|
|
F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1],
|
|
config['eps'], step, config['lr'], state['qmap1'], None, state['max1'], None, state['new_max1'], None,
|
|
config['weight_decay'], gnorm_scale,
|
|
state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'])
|
|
|
|
state['max1'], state['new_max1'] = state['new_max1'], state['max1']
|
|
elif state['state1'].dtype == torch.uint8 and config['block_wise']:
|
|
F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1],
|
|
config['eps'], step, config['lr'],
|
|
state['qmap1'], None, state['absmax1'], None,
|
|
config['weight_decay'], gnorm_scale=gnorm_scale, skip_zeros=config['skip_zeros'])
|