1890 lines
68 KiB
Plaintext
1890 lines
68 KiB
Plaintext
// Copyright (c) Facebook, Inc. and its affiliates.
|
|
//
|
|
// This source code is licensed under the MIT license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#include <kernels.cuh>
|
|
#include <cub/block/block_radix_sort.cuh>
|
|
#include <cub/warp/warp_reduce.cuh>
|
|
#include <cub/block/block_load.cuh>
|
|
#include <cub/block/block_discontinuity.cuh>
|
|
#include <cub/block/block_store.cuh>
|
|
#include <cub/block/block_reduce.cuh>
|
|
#include <cub/cub.cuh>
|
|
#include <math_constants.h>
|
|
|
|
#define HLF_MAX 65504
|
|
#define TH 1024
|
|
#define NUM 4
|
|
#define NUM_BLOCK 4096
|
|
|
|
// source: https://stackoverflow.com/questions/17399119/how-do-i-use-atomicmax-on-floating-point-values-in-cuda
|
|
__device__ float atomicMax(float* address, float val) {
|
|
int* address_as_i = reinterpret_cast<int*>(address);
|
|
int old = *address_as_i, assumed;
|
|
do {
|
|
assumed = old;
|
|
old = atomicCAS(
|
|
reinterpret_cast<int*>(address), assumed,
|
|
__float_as_int(fmaxf(val, __int_as_float(assumed))));
|
|
} while (assumed != old);
|
|
return __int_as_float(old);
|
|
}
|
|
|
|
__device__ float atomicMin(float* address, float val) {
|
|
int* address_as_i = reinterpret_cast<int*>(address);
|
|
int old = *address_as_i, assumed;
|
|
do {
|
|
assumed = old;
|
|
old = atomicCAS(
|
|
reinterpret_cast<int*>(address), assumed,
|
|
__float_as_int(fminf(val, __int_as_float(assumed))));
|
|
} while (assumed != old);
|
|
return __int_as_float(old);
|
|
}
|
|
|
|
template <int STOCHASTIC>
|
|
__device__ unsigned char dQuantize(float* smem_code, const float rand, float x)
|
|
{
|
|
int pivot = 127;
|
|
int upper_pivot = 255;
|
|
int lower_pivot = 0;
|
|
|
|
float lower = -1.0f;
|
|
float upper = 1.0f;
|
|
|
|
float val = smem_code[pivot];
|
|
// i>>=1 = {32, 16, 8, 4, 2, 1}
|
|
for(int i = 64; i > 0; i>>=1)
|
|
{
|
|
if(x > val)
|
|
{
|
|
lower_pivot = pivot;
|
|
lower = val;
|
|
pivot+=i;
|
|
}
|
|
else
|
|
{
|
|
upper_pivot = pivot;
|
|
upper = val;
|
|
pivot-=i;
|
|
}
|
|
val = smem_code[pivot];
|
|
}
|
|
|
|
if(upper_pivot == 255)
|
|
upper = smem_code[upper_pivot];
|
|
if(lower_pivot == 0)
|
|
lower = smem_code[lower_pivot];
|
|
|
|
if(!STOCHASTIC)
|
|
{
|
|
if(x > val)
|
|
{
|
|
float midpoint = (upper+val)*0.5f;
|
|
if(x > midpoint)
|
|
{
|
|
return upper_pivot;
|
|
}
|
|
else
|
|
return pivot;
|
|
}
|
|
else
|
|
{
|
|
float midpoint = (lower+val)*0.5f;
|
|
if(x < midpoint)
|
|
return lower_pivot;
|
|
else
|
|
return pivot;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(x > val)
|
|
{
|
|
float dist_to_upper = fabsf(upper-x);
|
|
float dist_full = upper-val;
|
|
if(rand >= dist_to_upper/dist_full) return upper_pivot;
|
|
else return pivot;
|
|
}
|
|
else
|
|
{
|
|
float dist_to_lower = fabsf(lower-x);
|
|
float dist_full = val-lower;
|
|
if(rand >= dist_to_lower/dist_full) return lower_pivot;
|
|
else return pivot;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int SIGNED>
|
|
__device__ __forceinline__ unsigned char quantize_2D(float *__restrict__ quadrants, float *__restrict__ const smem_code, float x)
|
|
{
|
|
int pivot = 127;
|
|
int upper_pivot = 255;
|
|
int lower_pivot = 0;
|
|
|
|
float lower = SIGNED ? -1.0f : 0.0f;
|
|
float upper = 1.0f;
|
|
float midpoint;
|
|
float val = quadrants[1];
|
|
int local_pivot = 1;
|
|
int offset = 1;
|
|
|
|
// i>>=1 = {32, 16, 8, 4, 2, 1}
|
|
for(int i = 64; i > 0; i>>=1)
|
|
{
|
|
if(x > val)
|
|
{
|
|
lower_pivot = pivot;
|
|
lower = val;
|
|
pivot+=i;
|
|
//val = i == 64 ? quadrants[2] : smem_code[pivot];
|
|
local_pivot += offset;
|
|
}
|
|
else
|
|
{
|
|
upper_pivot = pivot;
|
|
upper = val;
|
|
pivot-=i;
|
|
//val = i == 64 ? quadrants[0] : smem_code[pivot];
|
|
local_pivot -= offset;
|
|
}
|
|
val = i >= 64 ? quadrants[local_pivot] : smem_code[pivot];
|
|
offset -= 1;
|
|
}
|
|
|
|
if(x > val)
|
|
{
|
|
midpoint = (upper+val)*0.5f;
|
|
if(x > midpoint)
|
|
return upper_pivot;
|
|
else
|
|
return pivot;
|
|
}
|
|
else
|
|
{
|
|
midpoint = (lower+val)*0.5f;
|
|
if(x < midpoint)
|
|
return lower_pivot;
|
|
else
|
|
return pivot;
|
|
}
|
|
}
|
|
|
|
template <int SIGNED>
|
|
__device__ __forceinline__ unsigned char quantize_quadrant(int QUADRANT, float *__restrict__ const smem_code, float x, float lower, float midpoint, float upper)
|
|
{
|
|
int lower_pivot = QUADRANT*16-1 - 0;
|
|
int pivot = QUADRANT*16-1 + 16;
|
|
int upper_pivot = QUADRANT*16-1 + 31;
|
|
|
|
float val = midpoint;
|
|
|
|
// i>>=1 = {32, 16, 8, 4, 2, 1}
|
|
for(int i = 16; i > 0; i>>=1)
|
|
{
|
|
if(x > val)
|
|
{
|
|
lower_pivot = pivot;
|
|
lower = val;
|
|
pivot+=i;
|
|
}
|
|
else
|
|
{
|
|
upper_pivot = pivot;
|
|
upper = val;
|
|
pivot-=i;
|
|
}
|
|
val = smem_code[pivot];
|
|
}
|
|
|
|
if(x > val)
|
|
{
|
|
midpoint = (upper+val)*0.5f;
|
|
if(x > midpoint)
|
|
return upper_pivot;
|
|
else
|
|
return pivot;
|
|
}
|
|
else
|
|
{
|
|
midpoint = (lower+val)*0.5f;
|
|
if(x < midpoint)
|
|
return lower_pivot;
|
|
else
|
|
return pivot;
|
|
}
|
|
}
|
|
|
|
__global__ void kHistogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, const int maxidx1, const int n)
|
|
{
|
|
const int tid = threadIdx.x + (blockDim.x*blockIdx.x);
|
|
const int numThreads = blockDim.x*gridDim.x;
|
|
|
|
for(int i = tid; i < n; i+=numThreads)
|
|
{
|
|
int idx = (index1[i]*maxidx1) + index2[i];
|
|
atomicAdd(&histogram[idx], src[i]);
|
|
}
|
|
}
|
|
|
|
template<typename T, int BLOCK_SIZE, int NUM_MAX>
|
|
__global__ void kCompressMax(T * __restrict__ const A, T* out, unsigned char* out_idx, const int n)
|
|
{
|
|
typedef cub::WarpReduce<T> WarpReduce;
|
|
__shared__ typename WarpReduce::TempStorage temp_storage;
|
|
typedef cub::BlockLoad<T, BLOCK_SIZE/8 , 8, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
|
|
__shared__ typename LoadT::TempStorage loadt;
|
|
|
|
const int warp_idx = threadIdx.x/32;
|
|
const int valid_items = n - (blockIdx.x*BLOCK_SIZE) > BLOCK_SIZE ? BLOCK_SIZE : n - (blockIdx.x*BLOCK_SIZE);
|
|
|
|
// BLOCK_SIZE/32 == number of warps
|
|
__shared__ int smem_max_indices[8*BLOCK_SIZE/32];
|
|
__shared__ float smem_max_values[8*BLOCK_SIZE/32];
|
|
|
|
T values[8];
|
|
T max1 = -64000.0f;
|
|
T max2 = -64000.0f;
|
|
int max_idx1 = -1;
|
|
int max_idx2 = -1;
|
|
int sign1 = -1;
|
|
int sign2 = -1;
|
|
|
|
// 1. load 8 values per thread
|
|
// 2. compute 2-max in registers (64 max per warp)
|
|
// 3. do warp reduction + broadcast back
|
|
// 4. Up-shift maxed value, write index into shared memory, replace with 2nd largest
|
|
// 5. Repeat (3) 8 times for top 8 values in 256
|
|
// 6. store with byte index
|
|
|
|
LoadT(loadt).Load(&(A[(blockIdx.x*BLOCK_SIZE)]), values, valid_items, (T)0.0f);
|
|
#pragma unroll 8
|
|
for(int i = 0; i < 8; i++)
|
|
{
|
|
T absval = fabsf(values[i]);
|
|
if(absval > max1)
|
|
{
|
|
max1 = values[i];
|
|
sign1 = signbit(values[i]);
|
|
max_idx1 = 8*threadIdx.x + i;
|
|
}
|
|
else if(absval > max2)
|
|
{
|
|
max2 = values[i];
|
|
sign2 = signbit(values[i]);
|
|
max_idx2 = 8*threadIdx.x + i;
|
|
}
|
|
}
|
|
|
|
float warp_max;
|
|
for(int i = 0; i < 8; i++)
|
|
{
|
|
// 3. do warp reduction + broadcast back
|
|
warp_max = WarpReduce(temp_storage).Reduce(max1, cub::Max());
|
|
warp_max = cub::ShuffleIndex<32>(warp_max, 0, 0xffffffff);
|
|
|
|
// 4. Up-shift maxed value, write index into shared memory, replace with 2nd largest
|
|
if(warp_max == max1)
|
|
{
|
|
smem_max_values[warp_idx*8 + i] = sign1 != 0 ? -max1 : max1;
|
|
smem_max_indices[warp_idx*8 + i] = max_idx1;
|
|
|
|
sign1 = sign2;
|
|
max1 = max2;
|
|
max_idx1 = max_idx2;
|
|
|
|
max2 = -64000.0f;
|
|
}
|
|
__syncwarp();
|
|
}
|
|
|
|
if(threadIdx.x % 32 < 8)
|
|
{
|
|
// offset: 8 values per 256 input values
|
|
//
|
|
int offset = BLOCK_SIZE*blockIdx.x*BLOCK_SIZE/32*8;
|
|
}
|
|
|
|
}
|
|
|
|
#define THREADS_ESTIMATE 512
|
|
#define NUM_ESTIMATE 8
|
|
#define BLOCK_ESTIMATE 4096
|
|
|
|
template<typename T>
|
|
__launch_bounds__(THREADS_ESTIMATE, 1)
|
|
__global__ void kEstimateQuantiles(T *__restrict__ const A, float *code, const float offset, const T max_val, const int n)
|
|
{
|
|
const int n_full = (BLOCK_ESTIMATE*(n/BLOCK_ESTIMATE)) + (n % BLOCK_ESTIMATE == 0 ? 0 : BLOCK_ESTIMATE);
|
|
int valid_items = (blockIdx.x+1 == gridDim.x) ? n - (blockIdx.x*BLOCK_ESTIMATE) : BLOCK_ESTIMATE;
|
|
const int base_idx = (blockIdx.x * BLOCK_ESTIMATE);
|
|
const float reciprocal_num_blocks = 1.0f/(n < 4096 ? 1.0f : (n/BLOCK_ESTIMATE));
|
|
|
|
T vals[NUM_ESTIMATE];
|
|
|
|
typedef cub::BlockRadixSort<T, THREADS_ESTIMATE, NUM_ESTIMATE, cub::NullType, 4, true, cub::BLOCK_SCAN_RAKING> BlockRadixSort;
|
|
typedef cub::BlockLoad<T, THREADS_ESTIMATE, NUM_ESTIMATE, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
|
|
|
|
__shared__ union {
|
|
typename LoadFloat::TempStorage loadf;
|
|
typename BlockRadixSort::TempStorage sort;
|
|
int smem_qidx[BLOCK_ESTIMATE];
|
|
} temp_storage;
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_ESTIMATE)
|
|
{
|
|
valid_items = n - i > BLOCK_ESTIMATE ? BLOCK_ESTIMATE : n - i;
|
|
|
|
// do not process half-blocks
|
|
if(valid_items < BLOCK_ESTIMATE && n > BLOCK_ESTIMATE){ continue; }
|
|
|
|
#pragma unroll 4
|
|
for(int j = 0; j < NUM_ESTIMATE; j++)
|
|
vals[j] = max_val;
|
|
|
|
__syncthreads();
|
|
LoadFloat(temp_storage.loadf).Load(&(A[i]), vals, valid_items);
|
|
|
|
#pragma unroll 4
|
|
for(int j = 0; j < NUM_ESTIMATE; j++)
|
|
vals[j] = ((float)vals[j]) * reciprocal_num_blocks;
|
|
|
|
|
|
__syncthreads();
|
|
// sort into striped pattern to mitigate bank conflicts
|
|
// striped pattern index for thread 0 [0, 1024, 2048, 3096]
|
|
// striped pattern index for thread 1 [1, 1025, 2049, 3097]
|
|
BlockRadixSort(temp_storage.sort).SortBlockedToStriped(vals);
|
|
|
|
__syncthreads();
|
|
for(int j = threadIdx.x; j < BLOCK_ESTIMATE; j+=blockDim.x)
|
|
temp_storage.smem_qidx[j] = -1;
|
|
|
|
if(threadIdx.x < 256)
|
|
{
|
|
float q_interval = (1.0f-(2.0f*offset))/255.0f;
|
|
int local_idx = round(((offset+(threadIdx.x*q_interval))*(valid_items-1)));
|
|
temp_storage.smem_qidx[local_idx] = threadIdx.x;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
for(int i = threadIdx.x; i < BLOCK_ESTIMATE; i+=blockDim.x)
|
|
{
|
|
if(temp_storage.smem_qidx[i] != -1)
|
|
atomicAdd(&code[temp_storage.smem_qidx[i]], vals[i/THREADS_ESTIMATE]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
__launch_bounds__(TH, 4)
|
|
__global__ void kQuantize(float * code, float * __restrict__ const A, unsigned char *out, const int n)
|
|
{
|
|
const int n_full = (NUM_BLOCK*(n/NUM_BLOCK)) + (n % NUM_BLOCK == 0 ? 0 : NUM_BLOCK);
|
|
int valid_items = (blockIdx.x+1 == gridDim.x) ? n - (blockIdx.x*NUM_BLOCK) : NUM_BLOCK;
|
|
const int base_idx = (blockIdx.x * NUM_BLOCK);
|
|
|
|
float vals[NUM];
|
|
unsigned char qvals[NUM];
|
|
//const int lane_id = threadIdx.x % 2;
|
|
|
|
typedef cub::BlockLoad<float, TH, NUM, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
|
|
typedef cub::BlockStore<unsigned char, TH, NUM, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
|
|
|
|
__shared__ typename LoadFloat::TempStorage loadf;
|
|
__shared__ typename StoreChar::TempStorage storec;
|
|
__shared__ float smem_code[256];
|
|
//__shared__ float smem_code[2][257];
|
|
|
|
if(threadIdx.x < 256)
|
|
{
|
|
smem_code[threadIdx.x] = code[threadIdx.x];
|
|
//smem_code[0][threadIdx.x] = code[threadIdx.x];
|
|
//smem_code[1][threadIdx.x] = smem_code[0][threadIdx.x];
|
|
}
|
|
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_BLOCK)
|
|
{
|
|
// number of values already processed in blocks +
|
|
// number of values already processed in this block +
|
|
// rand_offset % mod value
|
|
valid_items = n - i > NUM_BLOCK ? NUM_BLOCK : n - i;
|
|
|
|
__syncthreads();
|
|
LoadFloat(loadf).Load(&(A[i]), vals, valid_items);
|
|
|
|
|
|
#pragma unroll 4
|
|
for(int j = 0; j < NUM; j++)
|
|
qvals[j] = dQuantize<0>(smem_code, 0.0f, vals[j]);
|
|
|
|
__syncthreads();
|
|
StoreChar(storec).Store(&(out[i]), qvals, valid_items);
|
|
}
|
|
}
|
|
|
|
template<typename T, int BLOCK_SIZE, int NUM_PER_TH, int STOCHASTIC>
|
|
__launch_bounds__(TH, 4)
|
|
__global__ void kQuantizeBlockwise(float * code, T * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n)
|
|
{
|
|
const int n_full = gridDim.x * BLOCK_SIZE;
|
|
int valid_items = 0;
|
|
const int base_idx = (blockIdx.x * BLOCK_SIZE);
|
|
|
|
T vals[NUM];
|
|
float rand_vals[NUM];
|
|
unsigned char qvals[NUM];
|
|
//float local_abs_max = -FLT_MAX;
|
|
float local_abs_max = 0.0f;
|
|
int local_rand_idx = 0;
|
|
|
|
typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
|
|
typedef cub::BlockStore<unsigned char, BLOCK_SIZE/NUM_PER_TH, NUM_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
|
|
typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_PER_TH> BlockReduce;
|
|
typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_PER_TH, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
|
|
|
|
__shared__ typename LoadT::TempStorage loadt;
|
|
__shared__ typename LoadFloat::TempStorage loadf;
|
|
__shared__ typename StoreChar::TempStorage storec;
|
|
__shared__ typename BlockReduce::TempStorage reduce;
|
|
__shared__ float smem_code[256];
|
|
__shared__ float smem_absmax_value[1];
|
|
|
|
if(threadIdx.x < 256)
|
|
smem_code[threadIdx.x] = code[threadIdx.x];
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
|
|
{
|
|
valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
|
|
local_abs_max = -FLT_MAX;
|
|
|
|
__syncthreads();
|
|
LoadT(loadt).Load(&(A[i]), vals, valid_items, (T)0.0f);
|
|
|
|
// 1. compute local max
|
|
// 2. broadcast local max
|
|
// 3. normalize inputs and quantize
|
|
|
|
#pragma unroll NUM_PER_TH
|
|
for(int j = 0; j < NUM_PER_TH; j++)
|
|
local_abs_max = fmaxf(local_abs_max, fabsf((float)vals[j]));
|
|
|
|
local_abs_max = BlockReduce(reduce).Reduce(local_abs_max, cub::Max(), valid_items);
|
|
|
|
if(threadIdx.x == 0)
|
|
smem_absmax_value[0] = local_abs_max;
|
|
|
|
__syncthreads();
|
|
|
|
if(threadIdx.x == 0)
|
|
absmax[i/BLOCK_SIZE] = local_abs_max;
|
|
else
|
|
local_abs_max = smem_absmax_value[0];
|
|
|
|
__syncwarp();
|
|
|
|
local_abs_max = 1.0f/local_abs_max;
|
|
|
|
if(STOCHASTIC)
|
|
{
|
|
local_rand_idx = ((blockIdx.x*NUM_BLOCK) + (threadIdx.x*NUM) + rand_offset) % (1024-4);
|
|
LoadFloat(loadf).Load(&rand[local_rand_idx], rand_vals, BLOCK_SIZE, 0);
|
|
}
|
|
|
|
#pragma unroll NUM_PER_TH
|
|
for(int j = 0; j < NUM_PER_TH; j++)
|
|
{
|
|
if(!STOCHASTIC)
|
|
qvals[j] = dQuantize<0>(smem_code, 0.0f, ((float)vals[j])*local_abs_max);
|
|
else
|
|
qvals[j] = dQuantize<1>(smem_code, rand_vals[j], ((float)vals[j])*local_abs_max);
|
|
}
|
|
|
|
__syncthreads();
|
|
StoreChar(storec).Store(&(out[i]), qvals, valid_items);
|
|
}
|
|
}
|
|
|
|
template<typename T, int BLOCK_SIZE, int THREADS, int NUM_PER_TH>
|
|
__global__ void kDequantizeBlockwise(float *code, unsigned char * __restrict__ const A, float * __restrict__ const absmax, T *out, const int n)
|
|
{
|
|
|
|
const int n_full = gridDim.x * BLOCK_SIZE;
|
|
int valid_items = 0;
|
|
const int base_idx = (blockIdx.x * BLOCK_SIZE);
|
|
|
|
T vals[NUM];
|
|
unsigned char qvals[NUM];
|
|
float local_abs_max = -FLT_MAX;
|
|
|
|
typedef cub::BlockLoad<unsigned char, THREADS, NUM_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
|
|
typedef cub::BlockStore<T, THREADS, NUM_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
|
|
|
|
__shared__ typename LoadChar::TempStorage loadchar;
|
|
__shared__ typename StoreT::TempStorage storet;
|
|
__shared__ float smem_code[256];
|
|
|
|
if(threadIdx.x < 256)
|
|
smem_code[threadIdx.x] = code[threadIdx.x];
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
|
|
{
|
|
valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
|
|
local_abs_max = absmax[i/BLOCK_SIZE];
|
|
|
|
__syncthreads();
|
|
LoadChar(loadchar).Load(&(A[i]), qvals, valid_items, 128);
|
|
|
|
#pragma unroll NUM_PER_TH
|
|
for(int j = 0; j < NUM_PER_TH; j++)
|
|
vals[j] = smem_code[qvals[j]]*local_abs_max;
|
|
|
|
__syncthreads();
|
|
StoreT(storet).Store(&(out[i]), vals, valid_items);
|
|
}
|
|
}
|
|
|
|
|
|
__global__ void kDequantize(float *code, unsigned char *A, float *out, const int n)
|
|
{
|
|
const unsigned int numThreads = blockDim.x * gridDim.x;
|
|
const int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
|
|
|
|
__shared__ float smem_code[256];
|
|
if(threadIdx.x < 256)
|
|
{
|
|
smem_code[threadIdx.x] = code[threadIdx.x];
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
for (int i = idx;i < n; i += numThreads)
|
|
{
|
|
out[i] = smem_code[A[i]];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
|
|
__launch_bounds__(BLOCK_SIZE/NUM_VALS, 1)
|
|
__global__ void kPreconditionOptimizer32bit2State(T* g, T* p,
|
|
float* state1, float* state2, float *unorm,
|
|
const float beta1, const float beta2, const float eps, const float weight_decay,
|
|
const int step, const float lr, const float gnorm_scale, const int n)
|
|
{
|
|
|
|
const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
|
|
const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
|
|
int valid_items = 0;
|
|
|
|
T g_vals[NUM_VALS];
|
|
|
|
float s1_vals[NUM_VALS];
|
|
float s2_vals[NUM_VALS];
|
|
|
|
const float correction1 = 1.0f/(1.0f - powf(beta1, step));
|
|
const float correction2 = 1.0f/(1.0f - powf(beta2, step));
|
|
|
|
typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
|
|
typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
|
|
typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;
|
|
|
|
__shared__ union {
|
|
typename Load::TempStorage load;
|
|
typename LoadFloat::TempStorage loadf;
|
|
typename BlockReduce::TempStorage reduce;
|
|
} temp_storage;
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
|
|
{
|
|
valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;
|
|
|
|
__syncthreads();
|
|
Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
|
|
__syncthreads();
|
|
LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);
|
|
__syncthreads();
|
|
LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items, 0.0f);
|
|
|
|
# pragma unroll NUM_VALS
|
|
for(unsigned int j = 0; j < NUM_VALS; j++)
|
|
g_vals[j] = gnorm_scale*((float)g_vals[j]);
|
|
|
|
# pragma unroll NUM_VALS
|
|
for(unsigned int j = 0; j < NUM_VALS; j++)
|
|
{
|
|
switch(OPTIMIZER)
|
|
{
|
|
case ADAM:
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f -beta1)*((float)g_vals[j]));
|
|
s2_vals[j] = s2_vals[j]*beta2 + ((1.0f -beta2)*(((float)g_vals[j])*((float)g_vals[j])));
|
|
s1_vals[j] *= correction1;
|
|
s2_vals[j] *= correction2;
|
|
s1_vals[j] = s1_vals[j]/(sqrtf(s2_vals[j])+eps); // update
|
|
s1_vals[j] *= s1_vals[j]; // update l2 norm (update*update)
|
|
break;
|
|
}
|
|
}
|
|
|
|
# pragma unroll NUM_VALS-1
|
|
for(unsigned int j = 1; j < NUM_VALS; j++)
|
|
s1_vals[0] += s1_vals[j];
|
|
|
|
__syncthreads();
|
|
s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0]);
|
|
|
|
if(threadIdx.x == 0)
|
|
atomicAdd(&unorm[0], s1_vals[0]);
|
|
|
|
__syncwarp();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#define NUM_PER_THREAD 4
|
|
|
|
template<typename T, int OPTIMIZER>
|
|
__launch_bounds__(TH, 1)
|
|
__global__ void kOptimizer32bit2State(T* g, T* p,
|
|
float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
|
|
const float beta1, const float beta2, const float eps, const float weight_decay,
|
|
const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
|
|
{
|
|
|
|
const int n_full = ((TH*NUM_PER_THREAD)*(n/(TH*NUM_PER_THREAD))) + (n % (TH*NUM_PER_THREAD) == 0 ? 0 : (TH*NUM_PER_THREAD));
|
|
const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
|
|
int valid_items = 0;
|
|
float update_scale = 0.0f;
|
|
T g_vals[NUM_PER_THREAD];
|
|
T p_vals[NUM_PER_THREAD];
|
|
|
|
float s1_vals[NUM_PER_THREAD];
|
|
float s2_vals[NUM_PER_THREAD];
|
|
|
|
const float correction1 = 1.0f - powf(beta1, step);
|
|
const float correction2 = sqrtf(1.0f - powf(beta2, step));
|
|
const float step_size = -lr*correction2/correction1;
|
|
|
|
if(max_unorm > 0.0f)
|
|
{
|
|
update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
|
|
if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
|
|
else{ update_scale = 1.0f; }
|
|
}
|
|
else{ update_scale = 1.0f; }
|
|
|
|
typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
|
|
typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;
|
|
|
|
typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
|
|
typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;
|
|
|
|
__shared__ union {
|
|
typename Load::TempStorage load;
|
|
typename Store::TempStorage store;
|
|
typename LoadFloat::TempStorage loadf;
|
|
typename StoreFloat::TempStorage storef;
|
|
} temp_storage;
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*TH*NUM_PER_THREAD)
|
|
{
|
|
valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
|
|
|
|
__syncthreads();
|
|
Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
|
|
__syncthreads();
|
|
LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
|
|
__syncthreads();
|
|
LoadFloat(temp_storage.loadf).Load(&(state2[i]), s2_vals, valid_items);
|
|
__syncthreads();
|
|
Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);
|
|
|
|
# pragma unroll 4
|
|
for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
|
|
g_vals[j] = gnorm_scale*((float)g_vals[j]);
|
|
|
|
# pragma unroll 4
|
|
for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
|
|
{
|
|
switch(OPTIMIZER)
|
|
{
|
|
case ADAM:
|
|
if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
|
|
{
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f -beta1)*((float)g_vals[j]));
|
|
s2_vals[j] = s2_vals[j]*beta2 + ((1.0f -beta2)*(((float)g_vals[j])*((float)g_vals[j])));
|
|
p_vals[j] = ((float)p_vals[j]) + (update_scale*step_size*(s1_vals[j]/(sqrtf(s2_vals[j])+(eps*correction2))));
|
|
|
|
if(weight_decay > 0.0f)
|
|
p_vals[j] = ((float)p_vals[j])*(1.0f-(lr*weight_decay));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
|
|
__syncthreads();
|
|
StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
|
|
__syncthreads();
|
|
StoreFloat(temp_storage.storef).Store(&(state2[i]), s2_vals, valid_items);
|
|
}
|
|
}
|
|
|
|
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
|
|
__launch_bounds__(BLOCK_SIZE/NUM_VALS, 1)
|
|
__global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
|
|
float* state1, float *unorm,
|
|
const float beta1, const float eps, const float weight_decay,
|
|
const int step, const float lr, const float gnorm_scale, const int n)
|
|
{
|
|
|
|
const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
|
|
const int base_idx = (blockIdx.x * blockDim.x * NUM_VALS);
|
|
int valid_items = 0;
|
|
|
|
T g_vals[NUM_VALS];
|
|
|
|
float s1_vals[NUM_VALS];
|
|
|
|
typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
|
|
typedef cub::BlockLoad<float, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
|
|
typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;
|
|
|
|
__shared__ union {
|
|
typename Load::TempStorage load;
|
|
typename LoadFloat::TempStorage loadf;
|
|
typename BlockReduce::TempStorage reduce;
|
|
} temp_storage;
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
|
|
{
|
|
valid_items = n - i >= (BLOCK_SIZE) ? (BLOCK_SIZE) : n - i;
|
|
|
|
__syncthreads();
|
|
Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items, 0.0f);
|
|
__syncthreads();
|
|
LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items, 0.0f);
|
|
|
|
# pragma unroll NUM_VALS
|
|
for(unsigned int j = 0; j < NUM_VALS; j++)
|
|
g_vals[j] = gnorm_scale*((float)g_vals[j]);
|
|
|
|
# pragma unroll NUM_VALS
|
|
for(unsigned int j = 0; j < NUM_VALS; j++)
|
|
{
|
|
switch(OPTIMIZER)
|
|
{
|
|
case MOMENTUM:
|
|
if(step == 1)
|
|
s1_vals[j] = (float)g_vals[j]; // state update
|
|
else
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]); // state update
|
|
s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
|
|
break;
|
|
case RMSPROP:
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*((float)g_vals[j])*((float)g_vals[j])); // state update
|
|
s1_vals[j] = __fdividef((float)g_vals[j],sqrtf(s1_vals[j])+eps); // update value
|
|
s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
|
|
break;
|
|
case ADAGRAD:
|
|
s1_vals[j] = s1_vals[j] + ((float)g_vals[j])*((float)g_vals[j]); // state update
|
|
s1_vals[j] = __fdividef((float)g_vals[j],sqrtf(s1_vals[j])+eps); // update value
|
|
s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
|
|
break;
|
|
}
|
|
}
|
|
|
|
# pragma unroll
|
|
for(unsigned int j = 1; j < NUM_VALS; j++)
|
|
s1_vals[0] += s1_vals[j];
|
|
|
|
__syncthreads();
|
|
s1_vals[0] = BlockReduce(temp_storage.reduce).Sum(s1_vals[0], valid_items);
|
|
|
|
if(threadIdx.x == 0)
|
|
atomicAdd(&unorm[0], s1_vals[0]);
|
|
|
|
__syncwarp();
|
|
}
|
|
}
|
|
|
|
template<typename T, int OPTIMIZER>
|
|
__launch_bounds__(TH, 1)
|
|
__global__ void kOptimizer32bit1State(T *g, T *p,
|
|
float *state1, float *unorm, const float max_unorm, const float param_norm,
|
|
const float beta1, const float eps, const float weight_decay,
|
|
const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
|
|
{
|
|
|
|
const int n_full = ((TH*NUM_PER_THREAD)*(n/(TH*NUM_PER_THREAD))) + (n % (TH*NUM_PER_THREAD) == 0 ? 0 : (TH*NUM_PER_THREAD));
|
|
const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
|
|
int valid_items = 0;
|
|
float update_scale = 0.0f;
|
|
|
|
if(max_unorm > 0.0f)
|
|
{
|
|
update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
|
|
if(update_scale > max_unorm*param_norm+eps){ update_scale = (max_unorm*param_norm+eps)/update_scale; }
|
|
else{ update_scale = 1.0f; }
|
|
}
|
|
else{ update_scale = 1.0f; }
|
|
|
|
T g_vals[NUM_PER_THREAD];
|
|
T p_vals[NUM_PER_THREAD];
|
|
|
|
float s1_vals[NUM_PER_THREAD];
|
|
|
|
typedef cub::BlockLoad<T, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> Load;
|
|
typedef cub::BlockStore<T, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> Store;
|
|
|
|
typedef cub::BlockLoad<float, TH, NUM_PER_THREAD, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadFloat;
|
|
typedef cub::BlockStore<float, TH, NUM_PER_THREAD, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreFloat;
|
|
|
|
__shared__ union {
|
|
typename Load::TempStorage load;
|
|
typename Store::TempStorage store;
|
|
typename LoadFloat::TempStorage loadf;
|
|
typename StoreFloat::TempStorage storef;
|
|
} temp_storage;
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*TH*NUM_PER_THREAD)
|
|
{
|
|
valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
|
|
|
|
__syncthreads();
|
|
Load(temp_storage.load).Load(&(g[i]), g_vals, valid_items);
|
|
__syncthreads();
|
|
LoadFloat(temp_storage.loadf).Load(&(state1[i]), s1_vals, valid_items);
|
|
__syncthreads();
|
|
Load(temp_storage.load).Load(&(p[i]), p_vals, valid_items);
|
|
|
|
# pragma unroll 4
|
|
for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
|
|
{
|
|
g_vals[j] = gnorm_scale*((float)g_vals[j]);
|
|
if(weight_decay > 0.0f)
|
|
g_vals[j] = (float)g_vals[j] + (((float)p_vals[j])*weight_decay);
|
|
}
|
|
|
|
# pragma unroll 4
|
|
for(unsigned int j = 0; j < NUM_PER_THREAD; j++)
|
|
{
|
|
if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
|
|
{
|
|
switch(OPTIMIZER)
|
|
{
|
|
case MOMENTUM:
|
|
if(step == 1)
|
|
s1_vals[j] = (float)g_vals[j];
|
|
else
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);
|
|
|
|
p_vals[j] = ((float)p_vals[j]) + update_scale*(-lr*(s1_vals[j]));
|
|
break;
|
|
case RMSPROP:
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*((float)g_vals[j])*((float)g_vals[j]));
|
|
p_vals[j] = ((float)p_vals[j]) - update_scale*(lr*__fdividef((float)g_vals[j],sqrtf((float)s1_vals[j])+eps));
|
|
break;
|
|
case ADAGRAD:
|
|
s1_vals[j] = s1_vals[j] + ((float)g_vals[j])*((float)g_vals[j]);
|
|
p_vals[j] = ((float)p_vals[j]) - lr*__fdividef((float)g_vals[j],sqrtf((float)s1_vals[j])+eps);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
Store(temp_storage.store).Store(&(p[i]), p_vals, valid_items);
|
|
__syncthreads();
|
|
StoreFloat(temp_storage.storef).Store(&(state1[i]), s1_vals, valid_items);
|
|
}
|
|
}
|
|
|
|
|
|
#define NUM8BIT 16
|
|
#define NUM_THREADS 256
|
|
#define NUM_PER_BLOCK 4096
|
|
|
|
template<typename T, int OPTIMIZER>
|
|
__global__ void
|
|
__launch_bounds__(NUM_THREADS, 2)
|
|
kPreconditionOptimizerStatic8bit2State(T* p, T* __restrict__ const g, unsigned char*__restrict__ const state1, unsigned char* __restrict__ const state2,
|
|
float *unorm,
|
|
const float beta1, const float beta2,
|
|
const float eps, const int step,
|
|
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
|
|
float* max1, float* max2, float* new_max1, float* new_max2,
|
|
const float gnorm_scale, const int n)
|
|
{
|
|
const int n_full = gridDim.x * NUM_PER_BLOCK;
|
|
const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
|
|
int valid_items = n - (blockIdx.x*NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x*NUM_PER_BLOCK);
|
|
float g_val = 0.0f;
|
|
float local_max_s1 = -FLT_MAX;
|
|
float local_max_s2 = -FLT_MAX;
|
|
float local_unorm = 0.0f;
|
|
|
|
float s2_vals[NUM8BIT];
|
|
float s1_vals[NUM8BIT];
|
|
T g_vals[NUM8BIT];
|
|
unsigned char m_c1[NUM8BIT];
|
|
unsigned char r_c2[NUM8BIT];
|
|
|
|
typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
|
|
typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
|
|
typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;
|
|
|
|
|
|
__shared__ union {
|
|
typename LoadT::TempStorage loadh;
|
|
typename LoadUInt8::TempStorage loadc;
|
|
typename BlockReduce::TempStorage reduce;
|
|
} temp_storage;
|
|
|
|
__shared__ float smem_quantiles1[256];
|
|
__shared__ float smem_quantiles2[256];
|
|
|
|
if(threadIdx.x < 256)
|
|
{
|
|
smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
|
|
smem_quantiles2[threadIdx.x] = quantiles2[threadIdx.x];
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += NUM_THREADS*gridDim.x*NUM8BIT)
|
|
{
|
|
valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
|
|
|
|
LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
|
|
__syncthreads();
|
|
LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);
|
|
__syncthreads();
|
|
LoadUInt8(temp_storage.loadc).Load(&(state2[i]), r_c2, valid_items, 128);
|
|
__syncthreads();
|
|
|
|
#pragma unroll 16
|
|
for(int j = 0; j < NUM8BIT; j++)
|
|
{
|
|
g_val = g_vals[j];
|
|
g_val *= gnorm_scale;
|
|
s1_vals[j] = smem_quantiles1[m_c1[j]]*max1[0]*beta1;
|
|
s1_vals[j] += (1.0f-beta1)*g_val;
|
|
local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
|
|
}
|
|
|
|
#pragma unroll 16
|
|
for(int j = 0; j < NUM8BIT; j++)
|
|
{
|
|
g_val = g_vals[j];
|
|
g_val *= gnorm_scale;
|
|
s2_vals[j] = smem_quantiles2[r_c2[j]]*max2[0]*beta2;
|
|
s2_vals[j] += (1.0f-beta2)*g_val*g_val;
|
|
local_max_s2 = fmaxf(local_max_s2, fabsf(s2_vals[j]));
|
|
}
|
|
|
|
if(unorm != NULL)
|
|
{
|
|
#pragma unroll 16
|
|
for(int j = 0; j < NUM8BIT; j++)
|
|
{
|
|
float correction1 = __fdividef(1.0f, 1.0f - powf(beta1, step));
|
|
float correction2 = __fdividef(1.0f, 1.0f - powf(beta2, step));
|
|
s1_vals[j] *= correction1;
|
|
s2_vals[j] *= correction2;
|
|
float update_val = s1_vals[j]/(sqrtf(s2_vals[j])+eps); // update
|
|
local_unorm += update_val*update_val;
|
|
}
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
|
|
__syncthreads();
|
|
local_max_s2 = BlockReduce(temp_storage.reduce).Reduce(local_max_s2, cub::Max(), valid_items);
|
|
if(unorm != NULL)
|
|
{
|
|
__syncthreads();
|
|
local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
|
|
}
|
|
|
|
if(threadIdx.x == 0)
|
|
{
|
|
atomicMax(&new_max1[0], local_max_s1);
|
|
atomicMax(&new_max2[0], local_max_s2);
|
|
if(unorm != NULL){ atomicAdd(&unorm[0], local_unorm); }
|
|
}
|
|
}
|
|
|
|
#define NUM_PER_THREAD2 4
|
|
#define NUM_THREADS2 1024
|
|
#define NUM_PER_BLOCK2 4096
|
|
|
|
template<typename T, int OPTIMIZER>
|
|
__global__ void
|
|
__launch_bounds__(NUM_THREADS2, 1)
|
|
kOptimizerStatic8bit2State(T* p, T* const g, unsigned char* state1, unsigned char* state2,
|
|
const float *unorm, const float max_unorm, const float param_norm, \
|
|
const float beta1, const float beta2,
|
|
const float eps, const int step, const float lr,
|
|
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
|
|
float* max1, float* max2, float* new_max1, float* new_max2,
|
|
float weight_decay,
|
|
const float gnorm_scale, const int n)
|
|
{
|
|
|
|
const int n_full = (blockDim.x * gridDim.x)*NUM_PER_THREAD2;
|
|
const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
|
|
int valid_items = 0;
|
|
float g_val = 0.0f;
|
|
float s1_vals[NUM_PER_THREAD2];
|
|
float s2_vals[NUM_PER_THREAD2];
|
|
const float correction1 = 1.0f - powf(beta1, step);
|
|
const float correction2 = sqrtf(1.0f - powf(beta2, step));
|
|
const float step_size = -lr*correction2/correction1;
|
|
//const float step_size = -lr*correction2/correction1;
|
|
float new_max_val1 = 1.0f/new_max1[0];
|
|
float new_max_val2 = 1.0f/new_max2[0];
|
|
float update_scale = 1.0f;
|
|
|
|
if(max_unorm > 0.0f)
|
|
{
|
|
update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
|
|
if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
|
|
else{ update_scale = 1.0f; }
|
|
}
|
|
else{ update_scale = 1.0f; }
|
|
|
|
unsigned char c1s[NUM_PER_THREAD2];
|
|
unsigned char c2s[NUM_PER_THREAD2];
|
|
T p_vals[NUM_PER_THREAD2];
|
|
T g_vals[NUM_PER_THREAD2];
|
|
typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
|
|
typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
|
|
|
|
typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
|
|
typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
|
|
|
|
__shared__ float smem_quantiles1[256];
|
|
__shared__ float smem_quantiles2[256];
|
|
|
|
__shared__ union {
|
|
typename LoadT::TempStorage loadh;
|
|
typename LoadChar::TempStorage loadc;
|
|
typename StoreChar::TempStorage storec;
|
|
typename StoreT::TempStorage storeh;
|
|
} temp_storage;
|
|
|
|
if(threadIdx.x < 512)
|
|
{
|
|
if(threadIdx.x < 256)
|
|
smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
|
|
else
|
|
smem_quantiles2[threadIdx.x-256] = quantiles2[threadIdx.x-256];
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS2*NUM_PER_THREAD2)
|
|
{
|
|
valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
|
|
LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
|
|
__syncthreads();
|
|
LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
|
|
__syncthreads();
|
|
LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);
|
|
__syncthreads();
|
|
LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);
|
|
|
|
if((i + (threadIdx.x*NUM_PER_THREAD2) + NUM_PER_THREAD2) > n){ continue; }
|
|
|
|
# pragma unroll 4
|
|
for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
|
|
{
|
|
g_val = float(g_vals[j]);
|
|
g_val *= gnorm_scale;
|
|
s1_vals[j] = smem_quantiles1[c1s[j]];
|
|
s1_vals[j] = s1_vals[j]*max1[0];
|
|
|
|
s1_vals[j] = (s1_vals[j]*beta1) + (((1.0f-beta1)*g_val));
|
|
|
|
c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j]*new_max_val1);
|
|
|
|
// make sure state1 term has still the same sign after quantization
|
|
// (not needed for state2 term which has only positive values)
|
|
if(signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j]))
|
|
{
|
|
if(s1_vals[j] > 0.0f)
|
|
c1s[j] += 1;
|
|
else
|
|
c1s[j] -= 1;
|
|
}
|
|
|
|
s2_vals[j] = smem_quantiles2[c2s[j]];
|
|
s2_vals[j] = s2_vals[j]*max2[0];
|
|
s2_vals[j] = (s2_vals[j]*beta2) + (((1.0f-beta2)*g_val*g_val));
|
|
c2s[j] = dQuantize<0>(smem_quantiles2, 0.0f, s2_vals[j]*new_max_val2);
|
|
}
|
|
|
|
# pragma unroll 4
|
|
for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
|
|
{
|
|
p_vals[j] = (T)(((float)p_vals[j]) + ((update_scale*step_size*(s1_vals[j]/(sqrtf(s2_vals[j])+(correction2*eps))))));
|
|
if(weight_decay > 0.0f)
|
|
p_vals[j] = update_scale*((float)p_vals[j])*(1.0f-(lr*weight_decay));
|
|
}
|
|
|
|
StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
|
|
__syncthreads();
|
|
StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
|
|
__syncthreads();
|
|
StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
|
|
__syncthreads();
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T, int OPTIMIZER>
|
|
__global__ void
|
|
__launch_bounds__(NUM_THREADS, 2)
|
|
kPreconditionOptimizerStatic8bit1State(T* p, T* __restrict__ const g, unsigned char*__restrict__ const state1,
|
|
float *unorm,
|
|
const float beta1,
|
|
const float eps, const int step,
|
|
float* __restrict__ const quantiles1,
|
|
float* max1, float* new_max1,
|
|
const float weight_decay,
|
|
const float gnorm_scale, const int n)
|
|
{
|
|
const int n_full = gridDim.x * NUM_PER_BLOCK;
|
|
const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD);
|
|
int valid_items = n - (blockIdx.x*NUM_PER_BLOCK) > NUM_PER_BLOCK ? NUM_PER_BLOCK : n - (blockIdx.x*NUM_PER_BLOCK);
|
|
float g_val = 0.0f;
|
|
float local_max_s1 = -FLT_MAX;
|
|
float local_unorm = 0.0f;
|
|
|
|
float s1_vals[NUM8BIT];
|
|
T g_vals[NUM8BIT];
|
|
unsigned char m_c1[NUM8BIT];
|
|
|
|
typedef cub::BlockLoad<T, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
|
|
typedef cub::BlockLoad<unsigned char, NUM_THREADS, NUM8BIT, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadUInt8;
|
|
typedef cub::BlockReduce<float, NUM_THREADS> BlockReduce;
|
|
|
|
|
|
__shared__ union {
|
|
typename LoadT::TempStorage loadh;
|
|
typename LoadUInt8::TempStorage loadc;
|
|
typename BlockReduce::TempStorage reduce;
|
|
} temp_storage;
|
|
|
|
__shared__ float smem_quantiles1[256];
|
|
|
|
if(threadIdx.x < 256)
|
|
smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
|
|
|
|
__syncthreads();
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS*NUM8BIT)
|
|
{
|
|
valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
|
|
|
|
__syncthreads();
|
|
LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
|
|
__syncthreads();
|
|
LoadUInt8(temp_storage.loadc).Load(&(state1[i]), m_c1, valid_items, 128);
|
|
|
|
#pragma unroll 16
|
|
for(int j = 0; j < NUM8BIT; j++)
|
|
{
|
|
g_val = g_vals[j];
|
|
g_val *= gnorm_scale;
|
|
s1_vals[j] = smem_quantiles1[m_c1[j]]*max1[0];
|
|
switch(OPTIMIZER)
|
|
{
|
|
case MOMENTUM:
|
|
if(step == 1)
|
|
s1_vals[j] = (float)g_vals[j];
|
|
else
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);
|
|
if(unorm != NULL)
|
|
local_unorm += s1_vals[j]*s1_vals[j];
|
|
break;
|
|
case RMSPROP:
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
|
|
break;
|
|
}
|
|
|
|
local_max_s1 = fmaxf(local_max_s1, fabsf(s1_vals[j]));
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
local_max_s1 = BlockReduce(temp_storage.reduce).Reduce(local_max_s1, cub::Max(), valid_items);
|
|
if(threadIdx.x == 0){ atomicMax(&new_max1[0], local_max_s1); }
|
|
if(unorm != NULL)
|
|
{
|
|
__syncthreads();
|
|
local_unorm = BlockReduce(temp_storage.reduce).Reduce(local_unorm, cub::Sum(), valid_items);
|
|
if(threadIdx.x == 0){ atomicAdd(&unorm[0], local_unorm); }
|
|
}
|
|
|
|
}
|
|
|
|
template<typename T, int OPTIMIZER>
|
|
__global__ void
|
|
kOptimizerStatic8bit1State(T* p, T* const g, unsigned char* state1,
|
|
const float *unorm, const float max_unorm, const float param_norm,
|
|
const float beta1,
|
|
const float eps, const int step, const float lr,
|
|
float* __restrict__ const quantiles1,
|
|
float* max1, float* new_max1,
|
|
float weight_decay,
|
|
const float gnorm_scale, const int n)
|
|
{
|
|
|
|
const int n_full = (blockDim.x * gridDim.x)*NUM_PER_THREAD2;
|
|
const int base_idx = (blockIdx.x * blockDim.x * NUM_PER_THREAD2);
|
|
int valid_items = 0;
|
|
float g_val = 0.0f;
|
|
float s1_vals[NUM_PER_THREAD2];
|
|
float new_max_val1 = 1.0f/new_max1[0];
|
|
float update_scale = 1.0f;
|
|
|
|
if(max_unorm > 0.0f)
|
|
{
|
|
update_scale = max_unorm > 0.0f ? sqrtf(unorm[0]) : 1.0f;
|
|
if(update_scale > max_unorm*param_norm){ update_scale = (max_unorm*param_norm)/update_scale; }
|
|
else{ update_scale = 1.0f; }
|
|
}
|
|
else{ update_scale = 1.0f; }
|
|
|
|
unsigned char c1s[NUM_PER_THREAD2];
|
|
T p_vals[NUM_PER_THREAD2];
|
|
T g_vals[NUM_PER_THREAD2];
|
|
typedef cub::BlockLoad<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
|
|
typedef cub::BlockLoad<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
|
|
|
|
typedef cub::BlockStore<unsigned char, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
|
|
typedef cub::BlockStore<T, NUM_THREADS2, NUM_PER_THREAD2, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
|
|
|
|
__shared__ float smem_quantiles1[256];
|
|
|
|
__shared__ union {
|
|
typename LoadT::TempStorage loadh;
|
|
typename LoadChar::TempStorage loadc;
|
|
typename StoreChar::TempStorage storec;
|
|
typename StoreT::TempStorage storeh;
|
|
} temp_storage;
|
|
|
|
if(threadIdx.x < 256)
|
|
smem_quantiles1[threadIdx.x] = quantiles1[threadIdx.x];
|
|
|
|
__syncthreads();
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*NUM_THREADS2*NUM_PER_THREAD2)
|
|
{
|
|
valid_items = n - i >= (TH*NUM_PER_THREAD) ? (TH*NUM_PER_THREAD) : n - i;
|
|
LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
|
|
__syncthreads();
|
|
LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
|
|
__syncthreads();
|
|
LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items);
|
|
|
|
if((i + (threadIdx.x*NUM_PER_THREAD2) + NUM_PER_THREAD2) > n){ continue; }
|
|
|
|
# pragma unroll 4
|
|
for(unsigned int j = 0; j < NUM_PER_THREAD2; j++)
|
|
{
|
|
g_val = float(g_vals[j]);
|
|
g_val *= gnorm_scale;
|
|
if(weight_decay > 0.0f)
|
|
g_val += ((float)p_vals[j])*weight_decay;
|
|
s1_vals[j] = smem_quantiles1[c1s[j]]*max1[0];
|
|
|
|
switch(OPTIMIZER)
|
|
{
|
|
case MOMENTUM:
|
|
if(step == 1)
|
|
s1_vals[j] = g_vals[j];
|
|
else
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]);
|
|
|
|
p_vals[j] = ((float)p_vals[j]) + (-lr*update_scale*(s1_vals[j]));
|
|
break;
|
|
case RMSPROP:
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
|
|
p_vals[j] = ((float)p_vals[j]) - (lr*__fdividef(g_val,sqrtf(s1_vals[j])+eps));
|
|
break;
|
|
}
|
|
|
|
c1s[j] = dQuantize<0>(smem_quantiles1, 0.0f, s1_vals[j]*new_max_val1);
|
|
|
|
// make sure state1 term has still the same sign after quantization
|
|
if(signbit(smem_quantiles1[c1s[j]]) != signbit(s1_vals[j]))
|
|
{
|
|
if(s1_vals[j] > 0.0f)
|
|
c1s[j] += 1;
|
|
else
|
|
c1s[j] -= 1;
|
|
}
|
|
}
|
|
|
|
StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
|
|
__syncthreads();
|
|
StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
|
|
__syncthreads();
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T, int BLOCK_SIZE, int NUM_VALS>
|
|
__global__ void kPercentileClipping(T * __restrict__ g, float *gnorm_vec, int step, const int n)
|
|
{
|
|
const int n_full = (BLOCK_SIZE*(n/BLOCK_SIZE)) + (n % BLOCK_SIZE == 0 ? 0 : BLOCK_SIZE);
|
|
int valid_items = 0;
|
|
|
|
typedef cub::BlockReduce<float, BLOCK_SIZE/NUM_VALS> BlockReduce;
|
|
typedef cub::BlockLoad<T, BLOCK_SIZE/NUM_VALS, NUM_VALS, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
|
|
|
|
__shared__ typename BlockReduce::TempStorage reduce;
|
|
|
|
__shared__ typename LoadT::TempStorage loadT;
|
|
T vals[NUM_VALS];
|
|
float local_sum = 0.0f;
|
|
|
|
for (unsigned int i = (blockIdx.x * BLOCK_SIZE); i < n_full; i += gridDim.x*BLOCK_SIZE)
|
|
{
|
|
valid_items = n - i > BLOCK_SIZE ? BLOCK_SIZE : n - i;
|
|
local_sum = 0.0f;
|
|
|
|
__syncthreads();
|
|
LoadT(loadT).Load(&(g[i]), vals, valid_items, (T)0.0f);
|
|
|
|
#pragma unroll NUM_VALS
|
|
for(int j = 0; j < NUM_VALS; j++)
|
|
local_sum += ((float)vals[j])*((float)vals[j]);
|
|
|
|
local_sum = BlockReduce(reduce).Sum(local_sum, valid_items);
|
|
if(threadIdx.x == 0)
|
|
{
|
|
if(step == 1)
|
|
{
|
|
// initialize with the same norm for all positions
|
|
//#pragma unroll 10
|
|
for(int j = 0; j < 100; j++)
|
|
atomicAdd(&gnorm_vec[j], local_sum);
|
|
}
|
|
else
|
|
atomicAdd(&gnorm_vec[step % 100], local_sum);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
#define LANES 2
|
|
#define QUAD 3
|
|
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
|
|
__launch_bounds__(256, 3)
|
|
__global__ void
|
|
kOptimizerStatic8bit2StateBlockwise(T* p, T* __restrict__ const g, unsigned char* state1, unsigned char* state2,
|
|
const float beta1, const float beta2,
|
|
const float eps, const int step, const float lr,
|
|
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
|
|
float* absmax1, float* absmax2,
|
|
float weight_decay,
|
|
const float gnorm_scale, const bool skip_zeros, const int n)
|
|
{
|
|
|
|
//const int n_full = n + (n%BLOCK_SIZE);
|
|
const int n_full = gridDim.x * BLOCK_SIZE;
|
|
const int base_idx = (blockIdx.x * BLOCK_SIZE);
|
|
int valid_items = 0;
|
|
float g_val = 0.0f;
|
|
float s1_vals[N_PER_TH];
|
|
float s2_vals[N_PER_TH];
|
|
// 2-5%
|
|
const float correction1 = 1.0f - __powf(beta1, step);
|
|
const float correction2 = sqrtf(1.0f -__powf(beta2, step));
|
|
const float step_size = __fdividef(-lr*correction2,correction1);
|
|
const int lane_id = threadIdx.x % LANES;
|
|
float new_local_abs_max1 = -FLT_MAX;
|
|
float new_local_abs_max2 = -FLT_MAX;
|
|
float quadrants1[QUAD];
|
|
float quadrants2[QUAD];
|
|
|
|
unsigned char c1s[N_PER_TH];
|
|
unsigned char c2s[N_PER_TH];
|
|
T g_vals[N_PER_TH];
|
|
typedef cub::BlockLoad<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
|
|
typedef cub::BlockLoad<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
|
|
|
|
typedef cub::BlockStore<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
|
|
typedef cub::BlockStore<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
|
|
|
|
__shared__ float smem_quantiles1[LANES][257];
|
|
__shared__ float smem_quantiles2[LANES][257];
|
|
typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce1;
|
|
typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce2;
|
|
__shared__ typename BlockReduce1::TempStorage reduce1;
|
|
__shared__ typename BlockReduce2::TempStorage reduce2;
|
|
__shared__ float smem_exchange1[1];
|
|
__shared__ float smem_exchange2[1];
|
|
|
|
__shared__ union {
|
|
typename LoadT::TempStorage loadh;
|
|
typename LoadChar::TempStorage loadc;
|
|
typename StoreChar::TempStorage storec;
|
|
typename StoreT::TempStorage storeh;
|
|
} temp_storage;
|
|
// init: 0.2 -> 0.23
|
|
|
|
// 0.23 -> 0.23
|
|
smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
|
|
smem_quantiles2[0][threadIdx.x] = quantiles2[threadIdx.x];
|
|
# pragma unroll
|
|
for(unsigned int j = 1; j < LANES; j++)
|
|
{
|
|
smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
|
|
smem_quantiles2[j][threadIdx.x] = smem_quantiles2[0][threadIdx.x];
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for(int k = 0; k < QUAD; k++)
|
|
{
|
|
quadrants1[k] = smem_quantiles1[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];
|
|
quadrants2[k] = smem_quantiles2[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];
|
|
}
|
|
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
|
|
{
|
|
// loads: 0.23 -> 0.85/1.44
|
|
valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
|
|
__syncthreads();
|
|
LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
|
|
__syncthreads();
|
|
LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
|
|
__syncthreads();
|
|
LoadChar(temp_storage.loadc).Load(&(state2[i]), c2s, valid_items, 0);
|
|
|
|
new_local_abs_max1 = -FLT_MAX;
|
|
new_local_abs_max2 = -FLT_MAX;
|
|
|
|
// update: 2.48/1.57 -> 2.51/1.60
|
|
# pragma unroll N_PER_TH
|
|
for(unsigned int j = 0; j < N_PER_TH; j++)
|
|
{
|
|
g_val = float(g_vals[j]);
|
|
g_val *= gnorm_scale;
|
|
if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
|
|
{
|
|
s1_vals[j] = smem_quantiles1[lane_id][c1s[j]]*absmax1[i/BLOCK_SIZE];
|
|
s1_vals[j] = (s1_vals[j]*beta1) + (((1.0f-beta1)*g_val));
|
|
|
|
s2_vals[j] = smem_quantiles2[lane_id][c2s[j]]*absmax2[i/BLOCK_SIZE];
|
|
s2_vals[j] = (s2_vals[j]*beta2) + (((1.0f-beta2)*g_val*g_val));
|
|
}
|
|
|
|
new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
|
|
new_local_abs_max2 = fmaxf(new_local_abs_max2, fabsf(s2_vals[j]));
|
|
}
|
|
|
|
|
|
// reduce: 2.51/1.60 -> 2.67/1.69
|
|
new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());
|
|
new_local_abs_max2 = BlockReduce2(reduce2).Reduce(new_local_abs_max2, cub::Max());
|
|
|
|
if(threadIdx.x == 0)
|
|
{
|
|
smem_exchange1[0] = new_local_abs_max1;
|
|
smem_exchange2[0] = new_local_abs_max2;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if(threadIdx.x == 0)
|
|
{
|
|
absmax1[i/BLOCK_SIZE] = new_local_abs_max1;
|
|
absmax2[i/BLOCK_SIZE] = new_local_abs_max2;
|
|
}
|
|
else
|
|
{
|
|
new_local_abs_max1 = smem_exchange1[0];
|
|
new_local_abs_max2 = smem_exchange2[0];
|
|
}
|
|
|
|
__syncthreads();
|
|
LoadT(temp_storage.loadh).Load(&(p[i]), g_vals, valid_items, (T)0.0f);
|
|
// reduce: 2.67/1.69 -> 2.67/1.70
|
|
# pragma unroll N_PER_TH
|
|
for(unsigned int j = 0; j < N_PER_TH; j++)
|
|
{
|
|
if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
|
|
{
|
|
g_vals[j] = (T)(((float)g_vals[j]) + ((step_size*(__fdividef(s1_vals[j],(sqrtf(s2_vals[j])+(correction2*eps)))))));
|
|
if(weight_decay > 0.0f)
|
|
g_vals[j] = ((float)g_vals[j])*(1.0f-(lr*weight_decay));
|
|
}
|
|
}
|
|
|
|
// store: 0.85/1.44 -> 2.48/1.57
|
|
__syncthreads();
|
|
StoreT(temp_storage.storeh).Store(&(p[i]), g_vals, valid_items);
|
|
|
|
// quantizaztion: 2.67/1.70 -> 3.4/3.3
|
|
# pragma unroll N_PER_TH
|
|
for(unsigned int j = 0; j < N_PER_TH; j++)
|
|
{
|
|
c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j],new_local_abs_max1));
|
|
c2s[j] = quantize_2D<0>(quadrants2, smem_quantiles2[lane_id], __fdividef(s2_vals[j],new_local_abs_max2));
|
|
|
|
// make sure state1 term has still the same sign after quantization
|
|
// (not needed for state2 term which has only positive values)
|
|
if(signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j]))
|
|
{
|
|
if(s1_vals[j] > 0.0f)
|
|
c1s[j] += 1;
|
|
else
|
|
c1s[j] -= 1;
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
|
|
__syncthreads();
|
|
StoreChar(temp_storage.storec).Store(&(state2[i]), c2s, valid_items);
|
|
}
|
|
}
|
|
|
|
|
|
#define LANES 2
|
|
#define QUAD 3
|
|
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH>
|
|
__launch_bounds__(256, 3)
|
|
__global__ void
|
|
kOptimizerStatic8bit1StateBlockwise(T* p, T* __restrict__ const g, unsigned char* state1,
|
|
const float beta1, const float beta2,
|
|
const float eps, const int step, const float lr,
|
|
float* __restrict__ const quantiles1,
|
|
float* absmax1,
|
|
float weight_decay,
|
|
const float gnorm_scale, const bool skip_zeros, const int n)
|
|
{
|
|
|
|
//const int n_full = n + (n%BLOCK_SIZE);
|
|
const int n_full = gridDim.x * BLOCK_SIZE;
|
|
const int base_idx = (blockIdx.x * BLOCK_SIZE);
|
|
int valid_items = 0;
|
|
float g_val = 0.0f;
|
|
float s1_vals[N_PER_TH];
|
|
// 2-5%
|
|
const int lane_id = threadIdx.x % LANES;
|
|
float new_local_abs_max1 = -FLT_MAX;
|
|
float quadrants1[QUAD];
|
|
|
|
unsigned char c1s[N_PER_TH];
|
|
T g_vals[N_PER_TH];
|
|
T p_vals[N_PER_TH];
|
|
|
|
typedef cub::BlockLoad<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadT;
|
|
typedef cub::BlockLoad<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_LOAD_WARP_TRANSPOSE> LoadChar;
|
|
|
|
typedef cub::BlockStore<unsigned char, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreChar;
|
|
typedef cub::BlockStore<T, BLOCK_SIZE/N_PER_TH, N_PER_TH, cub::BLOCK_STORE_WARP_TRANSPOSE> StoreT;
|
|
|
|
__shared__ float smem_quantiles1[LANES][257];
|
|
typedef cub::BlockReduce<float, BLOCK_SIZE/N_PER_TH> BlockReduce1;
|
|
__shared__ typename BlockReduce1::TempStorage reduce1;
|
|
__shared__ float smem_exchange1[1];
|
|
|
|
__shared__ union {
|
|
typename LoadT::TempStorage loadh;
|
|
typename LoadChar::TempStorage loadc;
|
|
typename StoreChar::TempStorage storec;
|
|
typename StoreT::TempStorage storeh;
|
|
} temp_storage;
|
|
// init: 0.2 -> 0.23
|
|
|
|
// 0.23 -> 0.23
|
|
smem_quantiles1[0][threadIdx.x] = quantiles1[threadIdx.x];
|
|
# pragma unroll
|
|
for(unsigned int j = 1; j < LANES; j++)
|
|
smem_quantiles1[j][threadIdx.x] = smem_quantiles1[0][threadIdx.x];
|
|
|
|
__syncthreads();
|
|
|
|
#pragma unroll
|
|
for(int k = 0; k < QUAD; k++)
|
|
quadrants1[k] = smem_quantiles1[lane_id][(k*256/(QUAD+1)) + (256/(QUAD+1)-1)];
|
|
|
|
for (unsigned int i = base_idx; i < n_full; i += gridDim.x*BLOCK_SIZE)
|
|
{
|
|
// loads: 0.23 -> 0.85/1.44
|
|
valid_items = n - i >= BLOCK_SIZE ? BLOCK_SIZE : n - i;
|
|
__syncthreads();
|
|
LoadT(temp_storage.loadh).Load(&(g[i]), g_vals, valid_items, (T)0.0f);
|
|
__syncthreads();
|
|
LoadChar(temp_storage.loadc).Load(&(state1[i]), c1s, valid_items, 128);
|
|
__syncthreads();
|
|
LoadT(temp_storage.loadh).Load(&(p[i]), p_vals, valid_items, (T)0.0f);
|
|
|
|
new_local_abs_max1 = -FLT_MAX;
|
|
|
|
// update: 2.48/1.57 -> 2.51/1.60
|
|
# pragma unroll N_PER_TH
|
|
for(unsigned int j = 0; j < N_PER_TH; j++)
|
|
{
|
|
g_val = float(g_vals[j]);
|
|
g_val *= gnorm_scale;
|
|
if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
|
|
{
|
|
if(weight_decay > 0.0f)
|
|
g_val += ((float)p_vals[j])*weight_decay;
|
|
|
|
s1_vals[j] = smem_quantiles1[lane_id][c1s[j]]*absmax1[i/BLOCK_SIZE];
|
|
|
|
switch(OPTIMIZER)
|
|
{
|
|
case MOMENTUM:
|
|
if(step == 1)
|
|
s1_vals[j] = g_val;
|
|
else
|
|
s1_vals[j] = (s1_vals[j]*beta1) + g_val;
|
|
break;
|
|
case RMSPROP:
|
|
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
|
|
break;
|
|
case ADAGRAD:
|
|
s1_vals[j] = s1_vals[j] + (g_val*g_val);
|
|
break;
|
|
}
|
|
}
|
|
|
|
new_local_abs_max1 = fmaxf(new_local_abs_max1, fabsf(s1_vals[j]));
|
|
}
|
|
|
|
|
|
// reduce: 2.51/1.60 -> 2.67/1.69
|
|
new_local_abs_max1 = BlockReduce1(reduce1).Reduce(new_local_abs_max1, cub::Max());
|
|
|
|
if(threadIdx.x == 0)
|
|
smem_exchange1[0] = new_local_abs_max1;
|
|
|
|
__syncthreads();
|
|
|
|
if(threadIdx.x == 0)
|
|
absmax1[i/BLOCK_SIZE] = new_local_abs_max1;
|
|
else
|
|
new_local_abs_max1 = smem_exchange1[0];
|
|
|
|
// reduce: 2.67/1.69 -> 2.67/1.70
|
|
# pragma unroll N_PER_TH
|
|
for(unsigned int j = 0; j < N_PER_TH; j++)
|
|
{
|
|
if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
|
|
{
|
|
switch(OPTIMIZER)
|
|
{
|
|
case MOMENTUM:
|
|
p_vals[j] = ((float)p_vals[j]) - lr*(s1_vals[j]);
|
|
break;
|
|
case RMSPROP:
|
|
g_val = g_vals[j];
|
|
p_vals[j] = ((float)p_vals[j]) - lr*(__fdividef(g_val, sqrtf(s1_vals[j])+eps));
|
|
break;
|
|
case ADAGRAD:
|
|
g_val = g_vals[j];
|
|
p_vals[j] = ((float)p_vals[j]) - lr*(__fdividef(g_val, sqrtf(s1_vals[j])+eps));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// store: 0.85/1.44 -> 2.48/1.57
|
|
__syncthreads();
|
|
StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
|
|
|
|
// quantizaztion: 2.67/1.70 -> 3.4/3.3
|
|
# pragma unroll N_PER_TH
|
|
for(unsigned int j = 0; j < N_PER_TH; j++)
|
|
{
|
|
c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j],new_local_abs_max1));
|
|
|
|
// make sure state1 term has still the same sign after quantization
|
|
// (not needed for state2 term which has only positive values)
|
|
if(signbit(smem_quantiles1[lane_id][c1s[j]]) != signbit(s1_vals[j]))
|
|
{
|
|
if(s1_vals[j] > 0.0f)
|
|
c1s[j] += 1;
|
|
else
|
|
c1s[j] -= 1;
|
|
}
|
|
}
|
|
|
|
__syncthreads();
|
|
StoreChar(temp_storage.storec).Store(&(state1[i]), c1s, valid_items);
|
|
}
|
|
}
|
|
|
|
//==============================================================
|
|
// TEMPLATE DEFINITIONS
|
|
//==============================================================
|
|
|
|
template __device__ unsigned char dQuantize<0>(float* smem_code, const float rand, float x);
|
|
template __device__ unsigned char dQuantize<1>(float* smem_code, const float rand, float x);
|
|
|
|
template __global__ void kEstimateQuantiles(float *__restrict__ const A, float *code, const float offset, const float max_val, const int n);
|
|
template __global__ void kEstimateQuantiles(half *__restrict__ const A, float *code, const float offset, const half max_val, const int n);
|
|
|
|
#define MAKE_PreconditionOptimizer32bit1State(oname, gtype) \
|
|
template __global__ void kPreconditionOptimizer32bit1State<gtype, oname, 4096, 8>(gtype* g, gtype* p, \
|
|
float* state1, float *unorm, \
|
|
const float beta1, const float eps, const float weight_decay, \
|
|
const int step, const float lr, const float gnorm_scale, const int n); \
|
|
|
|
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, half)
|
|
MAKE_PreconditionOptimizer32bit1State(MOMENTUM, float)
|
|
MAKE_PreconditionOptimizer32bit1State(RMSPROP, half)
|
|
MAKE_PreconditionOptimizer32bit1State(RMSPROP, float)
|
|
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, half)
|
|
MAKE_PreconditionOptimizer32bit1State(ADAGRAD, float)
|
|
|
|
#define MAKE_Optimizer32bit1State(oname, gtype) \
|
|
template __global__ void kOptimizer32bit1State<gtype, oname>(gtype* g, gtype* p, float* state1, float *unorm, const float max_unorm, const float param_norm, \
|
|
const float beta1, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n); \
|
|
|
|
MAKE_Optimizer32bit1State(MOMENTUM, half)
|
|
MAKE_Optimizer32bit1State(MOMENTUM, float)
|
|
MAKE_Optimizer32bit1State(RMSPROP, half)
|
|
MAKE_Optimizer32bit1State(RMSPROP, float)
|
|
MAKE_Optimizer32bit1State(ADAGRAD, half)
|
|
MAKE_Optimizer32bit1State(ADAGRAD, float)
|
|
|
|
#define MAKE_PreconditionOptimizer32bit2State(oname, gtype) \
|
|
template __global__ void kPreconditionOptimizer32bit2State<gtype, oname, 4096, 8>(gtype* g, gtype* p, \
|
|
float* state1, float* state2, float *unorm, \
|
|
const float beta1, const float beta2, const float eps, const float weight_decay, \
|
|
const int step, const float lr, const float gnorm_scale, const int n); \
|
|
|
|
MAKE_PreconditionOptimizer32bit2State(ADAM, half)
|
|
MAKE_PreconditionOptimizer32bit2State(ADAM, float)
|
|
|
|
template __global__ void kOptimizer32bit2State<half, ADAM>(half* g, half* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
|
|
const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
|
|
template __global__ void kOptimizer32bit2State<float, ADAM>(float* g, float* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
|
|
const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
|
|
|
|
#define MAKE_PreconditionStatic8bit1State(oname, gtype) \
|
|
template __global__ void kPreconditionOptimizerStatic8bit1State<gtype, oname>(gtype* p, gtype* __restrict__ const g, unsigned char*__restrict__ const state1, \
|
|
float *unorm, \
|
|
const float beta1, \
|
|
const float eps, const int step, \
|
|
float* __restrict__ const quantiles1, \
|
|
float* max1, float* new_max1, \
|
|
const float weight_decay, \
|
|
const float gnorm_scale, \
|
|
const int n); \
|
|
|
|
MAKE_PreconditionStatic8bit1State(MOMENTUM, half)
|
|
MAKE_PreconditionStatic8bit1State(MOMENTUM, float)
|
|
MAKE_PreconditionStatic8bit1State(RMSPROP, half)
|
|
MAKE_PreconditionStatic8bit1State(RMSPROP, float)
|
|
|
|
#define MAKE_optimizerStatic8bit1State(oname, gtype) \
|
|
template __global__ void kOptimizerStatic8bit1State<gtype, oname>(gtype* p, gtype* const g, unsigned char* state1, \
|
|
const float *unorm, const float max_unorm, const float param_norm, \
|
|
const float beta1, \
|
|
const float eps, const int step, const float lr, \
|
|
float* __restrict__ const quantiles1, \
|
|
float* max1, float* new_max1, \
|
|
float weight_decay, \
|
|
const float gnorm_scale, \
|
|
const int n); \
|
|
|
|
MAKE_optimizerStatic8bit1State(MOMENTUM, half)
|
|
MAKE_optimizerStatic8bit1State(MOMENTUM, float)
|
|
MAKE_optimizerStatic8bit1State(RMSPROP, half)
|
|
MAKE_optimizerStatic8bit1State(RMSPROP, float)
|
|
|
|
#define MAKE_PreconditionStatic8bit2State(oname, gtype) \
|
|
template __global__ void kPreconditionOptimizerStatic8bit2State<gtype, oname>(gtype* p, gtype* __restrict__ const g, unsigned char*__restrict__ const state1, unsigned char* __restrict__ const state2, \
|
|
float *unorm, \
|
|
const float beta1, const float beta2, \
|
|
const float eps, const int step, \
|
|
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
|
|
float* max1, float* max2, float* new_max1, float* new_max2, \
|
|
const float gnorm_scale, \
|
|
const int n); \
|
|
|
|
MAKE_PreconditionStatic8bit2State(ADAM, half)
|
|
MAKE_PreconditionStatic8bit2State(ADAM, float)
|
|
|
|
#define MAKE_optimizerStatic8bit2State(oname, gtype) \
|
|
template __global__ void kOptimizerStatic8bit2State<gtype, oname>(gtype* p, gtype* const g, unsigned char* state1, unsigned char* state2, \
|
|
const float *unorm, const float max_unorm, const float param_norm, \
|
|
const float beta1, const float beta2, \
|
|
const float eps, const int step, const float lr, \
|
|
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
|
|
float* max1, float* max2, float* new_max1, float* new_max2, \
|
|
float weight_decay, \
|
|
const float gnorm_scale, \
|
|
const int n); \
|
|
|
|
MAKE_optimizerStatic8bit2State(ADAM, half)
|
|
MAKE_optimizerStatic8bit2State(ADAM, float)
|
|
|
|
template __global__ void kPercentileClipping<float, 2048, 4>(float * __restrict__ g, float *gnorm_vec, int step, const int n);
|
|
template __global__ void kPercentileClipping<half, 2048, 4>(half * __restrict__ g, float *gnorm_vec, int step, const int n);
|
|
|
|
template __global__ void kQuantizeBlockwise<half, 4096, 4, 0>(float * code, half * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n);
|
|
template __global__ void kQuantizeBlockwise<float, 4096, 4, 0>(float * code, float * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n);
|
|
template __global__ void kQuantizeBlockwise<half, 4096, 4, 1>(float * code, half * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n);
|
|
template __global__ void kQuantizeBlockwise<float, 4096, 4, 1>(float * code, float * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n);
|
|
|
|
template __global__ void kDequantizeBlockwise<half, 4096, 1024, 4>(float *code, unsigned char * __restrict__ const A, float * __restrict__ const absmax, half *out, const int n);
|
|
template __global__ void kDequantizeBlockwise<float, 4096, 1024, 4>(float *code, unsigned char * __restrict__ const A, float * __restrict__ const absmax, float *out, const int n);
|
|
template __global__ void kDequantizeBlockwise<half, 2048, 512, 4>(float *code, unsigned char * __restrict__ const A, float * __restrict__ const absmax, half *out, const int n);
|
|
template __global__ void kDequantizeBlockwise<float, 2048, 512, 4>(float *code, unsigned char * __restrict__ const A, float * __restrict__ const absmax, float *out, const int n);
|
|
|
|
|
|
|
|
#define MAKE_OptimizerStatic8bit2StateBlockwise(oname, gtype, block_size, num_per_thread) \
|
|
template __global__ void kOptimizerStatic8bit2StateBlockwise<gtype, oname, block_size, num_per_thread>(gtype* p, gtype* __restrict__ const g, unsigned char* state1, unsigned char* state2, \
|
|
const float beta1, const float beta2, \
|
|
const float eps, const int step, const float lr, \
|
|
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
|
|
float* absmax1, float* absmax2, \
|
|
float weight_decay, \
|
|
const float gnorm_scale, const bool skip_zeros, const int n); \
|
|
|
|
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, float, 2048, 8)
|
|
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, half, 2048, 8)
|
|
|
|
#define MAKE_OptimizerStatic8bit1StateBlockwise(oname, gtype, block_size, num_per_thread) \
|
|
template __global__ void kOptimizerStatic8bit1StateBlockwise<gtype, oname, block_size, num_per_thread>( \
|
|
gtype* p, gtype* __restrict__ const g, unsigned char* state1, \
|
|
const float beta1, const float beta2, \
|
|
const float eps, const int step, const float lr, \
|
|
float* __restrict__ const quantiles1, \
|
|
float* absmax1, \
|
|
float weight_decay, \
|
|
const float gnorm_scale, const bool skip_zeros, const int n); \
|
|
|
|
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, float, 2048, 8)
|
|
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, half, 2048, 8)
|
|
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, float, 2048, 8)
|
|
MAKE_OptimizerStatic8bit1StateBlockwise(RMSPROP, half, 2048, 8)
|
|
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, float, 2048, 8)
|
|
MAKE_OptimizerStatic8bit1StateBlockwise(ADAGRAD, half, 2048, 8)
|