bitsandbytes-rocm/bitsandbytes/nn/modules.py

322 lines
11 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, TypeVar, Union, overload
import torch
import torch.nn.functional as F
from torch import Tensor, device, dtype, nn
import bitsandbytes as bnb
from bitsandbytes.optim import GlobalOptimManager
T = TypeVar("T", bound="torch.nn.Module")
class StableEmbedding(torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
device=None,
dtype=None,
) -> None:
super().__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
device,
dtype,
)
self.norm = torch.nn.LayerNorm(embedding_dim, device=device)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight)
self._fill_padding_idx_with_zero()
""" !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
to make the Layer compatible with Pytorch < 1.9.
This means that if this changes in future PyTorch releases this need to change too
which is cumbersome. However, with this we can ensure compatibility with previous
PyTorch releases.
"""
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
emb = F.embedding(
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
# always apply layer norm in full precision
emb = emb.to(torch.get_default_dtype())
return self.norm(emb).to(self.weight.dtype)
class Embedding(torch.nn.Embedding):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
) -> None:
super().__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight)
self._fill_padding_idx_with_zero()
""" !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
to make the Layer compatible with Pytorch < 1.9.
This means that if this changes in future PyTorch releases this need to change too
which is cumbersome. However, with this we can ensure compatibility with previous
PyTorch releases.
"""
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input: Tensor) -> Tensor:
emb = F.embedding(
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
return emb
class FP4Params(torch.nn.Parameter):
def __new__(cls, data=None, requires_grad=True, quant_state=None, blocksize=64, compress_statistics=True):
cls.quant_state = None
cls.blocksize = blocksize
cls.compress_statistics = compress_statistics
if data is None:
data = torch.empty(0)
return torch.Tensor._make_subclass(cls, data, requires_grad)
def cuda(self, device):
w = self.data.contiguous().half().cuda(device)
w_fp4, quant_state = bnb.functional.quantize_fp4(w, blocksize=self.blocksize, compress_statistics=self.compress_statistics)
self.data = w_fp4
self.quant_state = quant_state
return self
@overload
def to(self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ..., non_blocking: bool = ...,) -> T:
...
@overload
def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T:
...
@overload
def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T:
...
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
if (device is not None and device.type == "cuda" and self.data.device.type == "cpu"):
return self.cuda(device)
else:
new_param = FP4Params(super().to(device=device, dtype=dtype, non_blocking=non_blocking),
requires_grad=self.requires_grad, quant_state=self.quant_state)
return new_param
class LinearFP4(nn.Linear):
def __init__(self, input_features, output_features, bias=True, compute_dtype=None, compress_statistics=True):
super().__init__(input_features, output_features, bias)
self.state = bnb.MatmulLtState()
self.weight = FP4Params(self.weight.data, requires_grad=False, compress_statistics=compress_statistics)
self.compute_dtype = compute_dtype
def init_8bit_state(self):
pass
def forward(self, x: torch.Tensor):
self.state.is_training = self.training
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
if getattr(self.weight, 'quant_state', None) is None:
print('FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first.')
inp_dtype = x.dtype
if self.compute_dtype is not None:
x = x.to(self.compute_dtype)
bias = None if self.bias is None else self.bias.half()
out = bnb.matmul_fp4(x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state)
out = out.to(inp_dtype)
return out
class Int8Params(torch.nn.Parameter):
def __new__(
cls,
data=None,
requires_grad=True,
has_fp16_weights=False,
CB=None,
SCB=None,
):
cls.has_fp16_weights = has_fp16_weights
cls.CB = None
cls.SCB = None
if data is None:
data = torch.empty(0)
return torch.Tensor._make_subclass(cls, data, requires_grad)
def cuda(self, device):
if self.has_fp16_weights:
return super().cuda(device)
else:
# we store the 8-bit rows-major weight
# we convert this weight to the turning/ampere weight during the first inference pass
B = self.data.contiguous().half().cuda(device)
CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B)
del CBt
del SCBt
self.data = CB
setattr(self, "CB", CB)
setattr(self, "SCB", SCB)
return self
@overload
def to(
self: T,
device: Optional[Union[int, device]] = ...,
dtype: Optional[Union[dtype, str]] = ...,
non_blocking: bool = ...,
) -> T:
...
@overload
def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T:
...
@overload
def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T:
...
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
*args, **kwargs
)
if (
device is not None
and device.type == "cuda"
and self.data.device.type == "cpu"
):
return self.cuda(device)
else:
new_param = Int8Params(
super().to(
device=device, dtype=dtype, non_blocking=non_blocking
),
requires_grad=self.requires_grad,
has_fp16_weights=self.has_fp16_weights,
)
new_param.CB = self.CB
new_param.SCB = self.SCB
return new_param
class Linear8bitLt(nn.Linear):
def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True,
memory_efficient_backward=False, threshold=0.0, index=None):
super().__init__(input_features, output_features, bias)
assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
self.state = bnb.MatmulLtState()
self.index = index
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights)
def init_8bit_state(self):
self.state.CB = self.weight.CB
self.state.SCB = self.weight.SCB
self.weight.CB = None
self.weight.SCB = None
def forward(self, x: torch.Tensor):
self.state.is_training = self.training
if self.weight.CB is not None:
self.init_8bit_state()
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
if not self.state.has_fp16_weights:
if self.state.CB is not None and self.state.CxB is not None:
# we converted 8-bit row major to turing/ampere format in the first inference pass
# we no longer need the row-major weight
del self.state.CB
self.weight.data = self.state.CxB
return out