431 lines
15 KiB
Python
431 lines
15 KiB
Python
from itertools import product, permutations
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import bitsandbytes as bnb
|
|
|
|
n = 1
|
|
k = 25
|
|
dim1 = torch.randint(16, 64, size=(n,)).tolist()
|
|
dim2 = torch.randint(32, 96, size=(n,)).tolist()
|
|
dim3 = torch.randint(32, 96, size=(n,)).tolist()
|
|
dim4 = torch.randint(32, 96, size=(n,)).tolist()
|
|
funcs = [(torch.bmm, bnb.bmm_cublas), (torch.matmul, bnb.matmul_cublas)]
|
|
str_funcs = ["bmm", "matmul"]
|
|
req_grad = [(False, False), (True, False), (True, True), (False, True)]
|
|
req_grad_str = ["FF", "TF", "TT", "FT"]
|
|
transpose = [(False, False), (False, True), (True, True), (True, False)]
|
|
str_transpose = ["FF", "FT", "TT", "TF"]
|
|
dtype = [torch.float32, torch.float16]
|
|
values = list(
|
|
product(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose)
|
|
)
|
|
str_values = list(
|
|
product(
|
|
dim1, dim2, dim3, dim4, str_funcs, dtype, req_grad_str, str_transpose
|
|
)
|
|
)
|
|
names = [
|
|
"dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}".format(
|
|
*vals
|
|
)
|
|
for vals in str_values
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose",
|
|
values,
|
|
ids=names,
|
|
)
|
|
def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
|
|
if not torch.cuda.is_available(): pytest.skip('No GPU found.')
|
|
if dim2 > 0:
|
|
dim2 = dim2 - (dim2 % 16)
|
|
dim3 = dim3 - (dim3 % 16)
|
|
dim4 = dim4 - (dim4 % 16)
|
|
for i in range(k):
|
|
|
|
# normal multiply
|
|
if funcs[0] in [torch.mm, torch.matmul]:
|
|
dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
|
|
dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
|
|
A = torch.randn(size=dimA, device="cuda", requires_grad=req_grad[0])
|
|
B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1])
|
|
target = torch.randn(
|
|
size=(dim2, dim4), device="cuda", requires_grad=req_grad[1]
|
|
)
|
|
torch.nn.init.xavier_uniform_(B)
|
|
|
|
if not transpose[0] and not transpose[1]:
|
|
out_torch = funcs[0](A, B)
|
|
out_bnb = funcs[1](A, B)
|
|
elif not transpose[0] and transpose[1]:
|
|
out_torch = funcs[0](A, B.t())
|
|
out_bnb = funcs[1](A, B.t())
|
|
elif transpose[0] and not transpose[1]:
|
|
out_torch = funcs[0](A.t(), B)
|
|
out_bnb = funcs[1](A.t(), B)
|
|
elif transpose[0] and transpose[1]:
|
|
out_torch = funcs[0](A.t(), B.t())
|
|
out_bnb = funcs[1](A.t(), B.t())
|
|
|
|
n = out_bnb.numel()
|
|
idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
|
|
assert (idx == 0).sum().item() < n * 0.0175
|
|
idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
|
|
assert (idx == 0).sum().item() < n * 0.001
|
|
|
|
if any(req_grad):
|
|
out_bnb.data.copy_(out_torch)
|
|
torch.cuda.synchronize()
|
|
loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
|
|
loss_bnb.backward()
|
|
gradA1 = A.grad
|
|
gradB1 = B.grad
|
|
A.grad = None
|
|
B.grad = None
|
|
|
|
loss_torch = torch.nn.functional.mse_loss(
|
|
out_torch, target
|
|
).mean()
|
|
loss_torch.backward()
|
|
gradA2 = A.grad
|
|
gradB2 = B.grad
|
|
A.grad = None
|
|
B.grad = None
|
|
|
|
if req_grad[0]:
|
|
torch.testing.assert_allclose(
|
|
gradA1, gradA2, atol=0.015, rtol=0.1
|
|
)
|
|
if req_grad[1]:
|
|
n = gradB1.numel()
|
|
idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
|
|
assert (idx == 0).sum().item() < n * 0.1
|
|
idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
|
|
assert (idx == 0).sum().item() < n * 0.02
|
|
torch.testing.assert_allclose(
|
|
gradB1, gradB2, atol=0.18, rtol=0.3
|
|
)
|
|
|
|
# batched matrix multiply
|
|
if funcs[0] in [torch.bmm, torch.matmul]:
|
|
A = torch.randn(
|
|
size=(dim1, dim2, dim3),
|
|
device="cuda",
|
|
requires_grad=req_grad[0],
|
|
)
|
|
B = torch.randn(
|
|
size=(dim1, dim3, dim4),
|
|
device="cuda",
|
|
requires_grad=req_grad[1],
|
|
)
|
|
target = torch.randn(
|
|
size=(dim1, dim2, dim4),
|
|
device="cuda",
|
|
requires_grad=req_grad[1],
|
|
)
|
|
torch.nn.init.xavier_uniform_(B)
|
|
|
|
out_torch = funcs[0](A, B)
|
|
out_bnb = funcs[1](A, B)
|
|
|
|
n = out_bnb.numel()
|
|
idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
|
|
assert (idx == 0).sum().item() < n * 0.01
|
|
torch.testing.assert_allclose(
|
|
out_bnb, out_torch, atol=0.027, rtol=0.2
|
|
)
|
|
|
|
if any(req_grad):
|
|
out_bnb.data.copy_(out_torch)
|
|
torch.cuda.synchronize()
|
|
loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
|
|
loss_bnb.backward()
|
|
gradA1 = A.grad
|
|
gradB1 = B.grad
|
|
A.grad = None
|
|
B.grad = None
|
|
|
|
loss_torch = torch.nn.functional.mse_loss(
|
|
out_torch, target
|
|
).mean()
|
|
loss_torch.backward()
|
|
gradA2 = A.grad
|
|
gradB2 = B.grad
|
|
A.grad = None
|
|
B.grad = None
|
|
|
|
if req_grad[0]:
|
|
torch.testing.assert_allclose(
|
|
gradA1, gradA2, atol=0.015, rtol=0.1
|
|
)
|
|
if req_grad[1]:
|
|
n = gradB1.numel()
|
|
idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
|
|
assert (idx == 0).sum().item() < n * 0.1
|
|
idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
|
|
assert (idx == 0).sum().item() < n * 0.02
|
|
|
|
if funcs[0] in [torch.matmul]:
|
|
dim1 = dim1 - (dim1 % 16)
|
|
A = torch.randn(
|
|
size=(dim1, dim2, dim3),
|
|
device="cuda",
|
|
requires_grad=req_grad[0],
|
|
)
|
|
dimB = (dim4, dim3) if transpose[1] else (dim3, dim4)
|
|
B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1])
|
|
target = torch.randn(
|
|
size=(dim1, dim2, dim4),
|
|
device="cuda",
|
|
requires_grad=req_grad[1],
|
|
)
|
|
torch.nn.init.xavier_uniform_(B)
|
|
|
|
if transpose[1]:
|
|
out_torch = funcs[0](A, B.t())
|
|
out_bnb = funcs[1](A, B.t())
|
|
else:
|
|
out_torch = funcs[0](A, B)
|
|
out_bnb = funcs[1](A, B)
|
|
|
|
n = out_bnb.numel()
|
|
idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
|
|
assert (idx == 0).sum().item() < n * 0.0175
|
|
idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
|
|
assert (idx == 0).sum().item() < n * 0.001
|
|
|
|
if any(req_grad):
|
|
out_bnb.data.copy_(out_torch)
|
|
torch.cuda.synchronize()
|
|
loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
|
|
loss_bnb.backward()
|
|
gradA1 = A.grad
|
|
gradB1 = B.grad
|
|
A.grad = None
|
|
B.grad = None
|
|
|
|
loss_torch = torch.nn.functional.mse_loss(
|
|
out_torch, target
|
|
).mean()
|
|
loss_torch.backward()
|
|
gradA2 = A.grad
|
|
gradB2 = B.grad
|
|
A.grad = None
|
|
B.grad = None
|
|
|
|
if req_grad[0]:
|
|
torch.testing.assert_allclose(
|
|
gradA1, gradA2, atol=0.015, rtol=0.1
|
|
)
|
|
if req_grad[1]:
|
|
n = gradB1.numel()
|
|
idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
|
|
assert (idx == 0).sum().item() < n * 0.1
|
|
idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
|
|
assert (idx == 0).sum().item() < n * 0.02
|
|
|
|
|
|
n = 1
|
|
k = 3
|
|
dim1 = torch.randint(16, 64, size=(n,)).tolist()
|
|
dim2 = torch.randint(32, 96, size=(n,)).tolist()
|
|
dim3 = torch.randint(32, 96, size=(n,)).tolist()
|
|
dim4 = torch.randint(32, 96, size=(n,)).tolist()
|
|
|
|
dim2.append(0)
|
|
|
|
decomp = [0.0, 6.0]
|
|
funcs = [(torch.matmul, bnb.matmul)]
|
|
str_funcs = ["matmul"]
|
|
req_grad = [(False, False), (True, False), (True, True), (False, True)]
|
|
req_grad = list(product([True, False], repeat=3))
|
|
req_grad_str = []
|
|
for c in req_grad:
|
|
strval = ''
|
|
for v in c:
|
|
if v == True: strval += 'T'
|
|
else: strval += 'F'
|
|
req_grad_str.append(strval)
|
|
|
|
transpose = [(False, True), (False, False)]
|
|
str_transpose = ["NT", "NN"]
|
|
dtype = [torch.float16, torch.bfloat16]
|
|
has_fp16_weights = [True, False]
|
|
has_bias = [True, False]
|
|
values = list(
|
|
product(
|
|
dim1,
|
|
dim2,
|
|
dim3,
|
|
dim4,
|
|
funcs,
|
|
dtype,
|
|
req_grad,
|
|
transpose,
|
|
decomp,
|
|
has_fp16_weights,
|
|
has_bias
|
|
)
|
|
)
|
|
str_values = list(
|
|
product(
|
|
dim1,
|
|
dim2,
|
|
dim3,
|
|
dim4,
|
|
str_funcs,
|
|
dtype,
|
|
req_grad_str,
|
|
str_transpose,
|
|
decomp,
|
|
has_fp16_weights,
|
|
has_bias
|
|
)
|
|
)
|
|
names = ["dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}_decomp_{8}_has_fp16_weights_{9}_has_bias_{10}".format(*vals) for vals in str_values]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias",
|
|
values,
|
|
ids=names,
|
|
)
|
|
def test_matmullt(
|
|
dim1,
|
|
dim2,
|
|
dim3,
|
|
dim4,
|
|
funcs,
|
|
dtype,
|
|
req_grad,
|
|
transpose,
|
|
decomp,
|
|
has_fp16_weights,
|
|
has_bias
|
|
):
|
|
if not torch.cuda.is_available(): pytest.skip('No GPU found.')
|
|
dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
|
|
dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
|
|
outlier_dim = torch.randint(0, dimA[1], size=(dimA[1] // 8,), device="cuda")
|
|
if has_bias == False:
|
|
req_grad = list(req_grad)
|
|
req_grad[2] = False
|
|
|
|
for i in range(k):
|
|
|
|
# normal multiply
|
|
if funcs[0] in [torch.mm, torch.matmul]:
|
|
A = torch.randn(
|
|
size=dimA, device="cuda", requires_grad=req_grad[0], dtype=dtype
|
|
)
|
|
if decomp == 6.0:
|
|
with torch.no_grad():
|
|
A[:, outlier_dim] = 6.0
|
|
B = torch.randn(
|
|
size=dimB, device="cuda", requires_grad=req_grad[1], dtype=dtype
|
|
)
|
|
target = torch.randn(
|
|
size=(dim2, dim4),
|
|
device="cuda",
|
|
requires_grad=req_grad[1],
|
|
dtype=dtype,
|
|
)
|
|
bias = None
|
|
bias2 = None
|
|
if has_bias:
|
|
bias = torch.randn(dim4, device='cuda', dtype=dtype, requires_grad=req_grad[2])
|
|
bias2 = bias.clone()
|
|
torch.nn.init.xavier_uniform_(B)
|
|
B2 = B.clone()
|
|
|
|
state = bnb.MatmulLtState()
|
|
state.threshold = decomp
|
|
state.has_fp16_weights = has_fp16_weights
|
|
if not has_fp16_weights:
|
|
if not transpose[0] and not transpose[1]:
|
|
B2 = B2.t().contiguous()
|
|
(
|
|
state.CB,
|
|
CBt,
|
|
state.SCB,
|
|
SCBt,
|
|
coo_tensorB,
|
|
) = bnb.functional.double_quant(B2.to(torch.float16))
|
|
B2 = state.CB
|
|
|
|
if not transpose[0] and transpose[1]:
|
|
out_torch = funcs[0](A, B.t())
|
|
out_bnb = funcs[1](A, B2, state=state, bias=bias2)
|
|
elif not transpose[0] and not transpose[1]:
|
|
out_torch = funcs[0](A, B)
|
|
out_bnb = funcs[1](A, B2.t(), state=state, bias=bias2)
|
|
|
|
if has_bias:
|
|
out_torch += bias
|
|
|
|
assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}"
|
|
|
|
n = out_bnb.numel()
|
|
err = torch.abs(out_bnb - out_torch).mean().item()
|
|
# print(f'abs error {err:.4f}')
|
|
idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
|
|
assert (idx == 0).sum().item() <= n * 0.0175
|
|
idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
|
|
assert (idx == 0).sum().item() <= n * 0.001
|
|
|
|
if has_fp16_weights:
|
|
if any(req_grad):
|
|
out_bnb.data.copy_(out_torch)
|
|
torch.cuda.synchronize()
|
|
loss_bnb = torch.nn.functional.mse_loss(
|
|
out_bnb, target
|
|
).mean()
|
|
loss_bnb.backward()
|
|
gradA1 = A.grad
|
|
gradB1 = B.grad
|
|
A.grad = None
|
|
B.grad = None
|
|
if has_bias:
|
|
gradBias1 = bias.grad
|
|
bias.grad = None
|
|
|
|
loss_torch = torch.nn.functional.mse_loss(
|
|
out_torch, target
|
|
).mean()
|
|
loss_torch.backward()
|
|
gradA2 = A.grad
|
|
gradB2 = B.grad
|
|
A.grad = None
|
|
B.grad = None
|
|
if has_bias:
|
|
gradBias2 = bias.grad
|
|
bias.grad = None
|
|
|
|
if req_grad[0]:
|
|
torch.testing.assert_allclose(
|
|
gradA1, gradA2, atol=0.015, rtol=0.1
|
|
)
|
|
if req_grad[1]:
|
|
n = gradB1.numel()
|
|
if dim2 > 0:
|
|
assert torch.abs(gradB1).sum() > 0.0
|
|
assert torch.abs(gradB2).sum() > 0.0
|
|
else:
|
|
assert torch.abs(gradB1).sum() == 0.0
|
|
assert torch.abs(gradB2).sum() == 0.0
|
|
idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
|
|
|
|
assert (idx == 0).sum().item() <= n * 0.1
|
|
idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
|
|
assert (idx == 0).sum().item() <= n * 0.02
|
|
torch.testing.assert_allclose(
|
|
gradB1, gradB2, atol=0.18, rtol=0.3
|
|
)
|
|
|
|
if req_grad[2]:
|
|
torch.testing.assert_allclose(gradBias1, gradBias2)
|