bitsandbytes-rocm/tests/test_functional.py
2021-10-05 19:16:20 -07:00

214 lines
7.0 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import pytest
import torch
import bitsandbytes as bnb
from itertools import product
from bitsandbytes import functional as F
def setup():
pass
def teardown():
pass
@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['float', 'half'])
def test_estimate_quantiles(dtype):
A = torch.rand(1024, 1024, device='cuda')
A = A.to(dtype)
code = F.estimate_quantiles(A)
percs = torch.linspace(1/512, 511/512, 256, device=A.device)
torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2)
A = torch.randn(1024, 1024, device='cuda')
A = A.to(dtype)
code = F.estimate_quantiles(A)
quantiles = torch.quantile(A.float(), percs)
diff = torch.abs(code-quantiles)
assert (diff > 5e-02).sum().item() == 0
def test_quantile_quantization():
for i in range(100):
A1 = torch.randn(1024, 1024, device='cuda')
code = F.estimate_quantiles(A1)
C = F.quantize_no_absmax(A1, code)
A2 = F.dequantize_no_absmax(C, code)
diff = torch.abs(A1-A2).mean().item()
assert diff < 0.0075
A1 = torch.rand(1024, 1024, device='cuda')
code = F.estimate_quantiles(A1)
C = F.quantize_no_absmax(A1, code)
A2 = F.dequantize_no_absmax(C, code)
diff = torch.abs(A1-A2).mean().item()
torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0)
assert diff < 0.001
def test_dynamic_quantization():
diffs = []
reldiffs = []
for i in range(100):
A1 = torch.randn(1024, 1024, device='cuda')
C, S = F.quantize(A1)
A2 = F.dequantize(C, S)
diff = torch.abs(A1-A2)
reldiff = diff/torch.abs(A1+1e-8)
diffs.append(diff.mean().item())
reldiffs.append(reldiff.mean().item())
assert diff.mean().item() < 0.0135
print(sum(diffs)/len(diffs))
print(sum(reldiffs)/len(reldiffs))
for i in range(100):
A1 = torch.rand(1024, 1024, device='cuda')
C, S = F.quantize(A1)
A2 = F.dequantize(C, S)
diff = torch.abs(A1-A2).mean().item()
torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
assert diff < 0.004
def test_dynamic_blockwise_quantization():
diffs = []
reldiffs = []
for i in range(100):
A1 = torch.randn(1024, 1024, device='cuda')
C, S = F.quantize_blockwise(A1)
A2 = F.dequantize_blockwise(C, S)
diff = torch.abs(A1-A2)
reldiff = diff/torch.abs(A1+1e-8)
diffs.append(diff.mean().item())
reldiffs.append(reldiff.mean().item())
assert diffs[-1] < 0.011
print(sum(diffs)/len(diffs))
print(sum(reldiffs)/len(reldiffs))
diffs = []
for i in range(100):
A1 = torch.rand(1024, 1024, device='cuda')
C, S = F.quantize_blockwise(A1)
A2 = F.dequantize_blockwise(C, S)
diff = torch.abs(A1-A2).mean().item()
assert diff < 0.0033
diffs.append(diff)
torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
#print(sum(diffs)/len(diffs))
def test_dynamic_blockwise_stochastic_quantization():
diffs = []
reldiffs = []
rand = torch.rand(1024).cuda()
for i in range(100):
A1 = torch.randn(1024, 1024, device='cuda')
C1, S1 = F.quantize_blockwise(A1, rand=rand)
C2, S2 = F.quantize_blockwise(A1)
# a maximunm distance of quantized values of 1
torch.testing.assert_allclose(C1, C2, atol=1, rtol=0)
fraction_smaller = (C1<C2).float().sum()/C1.numel()
fraction_larger = (C1>C2).float().sum()/C1.numel()
torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0)
@pytest.mark.parametrize("gtype", [torch.float32, torch.float16], ids=['float', 'half'])
def test_percentile_clipping(gtype):
gnorm_vec1 = torch.zeros(100, device='cuda')
gnorm_vec2 = torch.zeros(100, device='cuda')
n = 4
step = 0
percentile=5
for i in range(1000):
step += 1
g = torch.randn(n, n, dtype=gtype, device='cuda')
gnorm1, clip2, gnorm_scale = F.percentile_clipping(g, gnorm_vec2, step, percentile=percentile)
assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2/gnorm1
gnorm2 = torch.norm(g.float())
if step == 1:
gnorm_vec1[:] = gnorm2
else:
gnorm_vec1[step % 100] = gnorm2
vals, idx = torch.sort(gnorm_vec1)
clip1 = vals[percentile]
torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2))
torch.testing.assert_allclose(clip1, clip2)
torch.testing.assert_allclose(gnorm1, gnorm2)
def test_stable_embedding():
layer = bnb.nn.StableEmbedding(1024, 1024)
layer.reset_parameters()
def test_dynamic_blockwise_quantization_cpu():
#A1 = torch.randn(1024, 1024, device='cpu')
#code = F.create_dynamic_map()
#for i in range(1000):
# C, S = F.quantize_blockwise(A1, code=code)
# A2 = F.dequantize_blockwise(C, S)
for i in range(10):
# equivalence with GPU blockwise quantization
A1 = torch.randn(1024, 1024, device='cpu')
C1, S1 = F.quantize_blockwise(A1)
C2, S2 = F.quantize_blockwise(A1.cuda())
torch.testing.assert_allclose(S1[0], S2[0].cpu())
# there seems to be some issues with precision in CUDA vs CPU
# not all elements are usually close, with couple off elements in a million
idx = torch.isclose(C1, C2.cpu())
assert (idx==0).sum().item() < 15
diffs = []
reldiffs = []
for i in range(10):
A1 = torch.randn(1024, 1024, device='cpu')
C, S = F.quantize_blockwise(A1)
A2 = F.dequantize_blockwise(C, S)
diff = torch.abs(A1-A2)
reldiff = diff/torch.abs(A1+1e-8)
diffs.append(diff.mean().item())
reldiffs.append(reldiff.mean().item())
assert diffs[-1] < 0.011
#print(sum(diffs)/len(diffs))
#print(sum(reldiffs)/len(reldiffs))
diffs = []
for i in range(10):
A1 = torch.rand(1024, 1024, device='cpu')
C, S = F.quantize_blockwise(A1)
A2 = F.dequantize_blockwise(C, S)
diff = torch.abs(A1-A2).mean().item()
assert diff < 0.0033
diffs.append(diff)
torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
#print(sum(diffs)/len(diffs))
def test_histogram():
dim1, dim2 = 32, 32
source = torch.rand(dim1, dim2, device='cuda')
idx1 = torch.randint(0, 255, size=(dim1, dim2), device='cuda').int()
idx2 = torch.randint(0, 255, size=(dim1, dim2), device='cuda').int()
histogram1 = torch.zeros((256, 256)).cuda()
histogram2 = torch.zeros((256, 256)).cuda()
F.histogram_scatter_add_2d(histogram2, idx1, idx2, source)
for i in range(dim1):
for j in range(dim2):
histogram1[idx1[i, j].item(), idx2[i, j].item()] += source[i, j]
torch.testing.assert_allclose(histogram1, histogram2)
torch.testing.assert_allclose(histogram1.sum(), source.sum())