75 lines
2.7 KiB
Python
75 lines
2.7 KiB
Python
import math
|
|
import torch
|
|
import time
|
|
from bitsandbytes.triton.triton_utils import is_triton_available
|
|
|
|
if not is_triton_available():
|
|
def quantize_columnwise_and_transpose(x: torch.Tensor): return None
|
|
else:
|
|
|
|
import triton
|
|
import triton.language as tl
|
|
from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time
|
|
|
|
# This kernel does fused columnwise quantization and transpose.
|
|
|
|
# TODO: autotune this better.
|
|
@triton.autotune(
|
|
configs=[
|
|
triton.Config({}, num_stages=1),
|
|
triton.Config({}, num_stages=2),
|
|
triton.Config({}, num_stages=4),
|
|
triton.Config({}, num_stages=8),
|
|
triton.Config({}, num_stages=16),
|
|
triton.Config({}, num_stages=1, num_warps=8),
|
|
triton.Config({}, num_stages=2, num_warps=8),
|
|
triton.Config({}, num_stages=4, num_warps=8),
|
|
triton.Config({}, num_stages=8, num_warps=8),
|
|
triton.Config({}, num_stages=16, num_warps=8),
|
|
triton.Config({}, num_warps=1),
|
|
triton.Config({}, num_warps=2),
|
|
triton.Config({}, num_warps=4),
|
|
triton.Config({}, num_warps=8),
|
|
],
|
|
key=['n_elements']
|
|
)
|
|
@triton.jit
|
|
def _quantize_columnwise_and_transpose(
|
|
x_ptr,
|
|
output_ptr,
|
|
output_maxs,
|
|
n_elements,
|
|
M : tl.constexpr, N : tl.constexpr,
|
|
BLOCK_SIZE: tl.constexpr,
|
|
P2: tl.constexpr,
|
|
):
|
|
pid = tl.program_id(axis=0)
|
|
block_start = pid
|
|
p2_arange = tl.arange(0, P2)
|
|
p2_arange_mask = p2_arange < M
|
|
arange = p2_arange * N
|
|
offsets = block_start + arange
|
|
x = tl.load(x_ptr + offsets, mask=p2_arange_mask)
|
|
abs_x = tl.abs(x)
|
|
max_val = tl.max(tl.where(p2_arange_mask, abs_x, 0), axis=0)
|
|
output = tl.libdevice.llrint(127. * (x / max_val))
|
|
|
|
new_start = pid * M
|
|
new_offsets = new_start + p2_arange
|
|
tl.store(output_ptr + new_offsets, output, mask=p2_arange_mask)
|
|
tl.store(output_maxs + pid, max_val)
|
|
|
|
def quantize_columnwise_and_transpose(x: torch.Tensor):
|
|
M, N = x.shape
|
|
output = torch.empty(N, M, device=x.device, dtype=torch.int8)
|
|
output_maxs = torch.empty(x.shape[1], device=x.device, dtype=torch.float16)
|
|
|
|
P2 = int(2 ** (math.ceil(math.log2(M))))
|
|
|
|
assert x.is_cuda and output.is_cuda
|
|
n_elements = output.numel()
|
|
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
|
|
_quantize_columnwise_and_transpose[grid](x, output, output_maxs, n_elements, M, N, BLOCK_SIZE=M, P2=P2)
|
|
return output, output_maxs
|
|
|