133 lines
3.7 KiB
Python
133 lines
3.7 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
from bitsandbytes.optim.optimizer import Optimizer1State
|
|
|
|
|
|
class Adagrad(Optimizer1State):
|
|
def __init__(
|
|
self,
|
|
params,
|
|
lr=1e-2,
|
|
lr_decay=0,
|
|
weight_decay=0,
|
|
initial_accumulator_value=0,
|
|
eps=1e-10,
|
|
optim_bits=32,
|
|
args=None,
|
|
min_8bit_size=4096,
|
|
percentile_clipping=100,
|
|
block_wise=True,
|
|
):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError(
|
|
"Invalid weight_decay value: {}".format(weight_decay)
|
|
)
|
|
if not 0.0 <= eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if initial_accumulator_value != 0.0:
|
|
raise ValueError("Initial accumulator value != 0.0 not supported!")
|
|
if lr_decay != 0.0:
|
|
raise ValueError("Lr Decay != 0.0 not supported!")
|
|
super(Adagrad, self).__init__(
|
|
"adagrad",
|
|
params,
|
|
lr,
|
|
(0.0, 0.0),
|
|
eps,
|
|
weight_decay,
|
|
optim_bits,
|
|
args,
|
|
min_8bit_size,
|
|
percentile_clipping,
|
|
block_wise,
|
|
)
|
|
|
|
|
|
class Adagrad8bit(Optimizer1State):
|
|
def __init__(
|
|
self,
|
|
params,
|
|
lr=1e-2,
|
|
lr_decay=0,
|
|
weight_decay=0,
|
|
initial_accumulator_value=0,
|
|
eps=1e-10,
|
|
optim_bits=8,
|
|
args=None,
|
|
min_8bit_size=4096,
|
|
percentile_clipping=100,
|
|
block_wise=True,
|
|
):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError(
|
|
"Invalid weight_decay value: {}".format(weight_decay)
|
|
)
|
|
if not 0.0 <= eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if initial_accumulator_value != 0.0:
|
|
raise ValueError("Initial accumulator value != 0.0 not supported!")
|
|
if lr_decay != 0.0:
|
|
raise ValueError("Lr Decay != 0.0 not supported!")
|
|
assert block_wise
|
|
super(Adagrad8bit, self).__init__(
|
|
"adagrad",
|
|
params,
|
|
lr,
|
|
(0.0, 0.0),
|
|
eps,
|
|
weight_decay,
|
|
8,
|
|
args,
|
|
min_8bit_size,
|
|
percentile_clipping,
|
|
block_wise,
|
|
)
|
|
|
|
|
|
class Adagrad32bit(Optimizer1State):
|
|
def __init__(
|
|
self,
|
|
params,
|
|
lr=1e-2,
|
|
lr_decay=0,
|
|
weight_decay=0,
|
|
initial_accumulator_value=0,
|
|
eps=1e-10,
|
|
optim_bits=32,
|
|
args=None,
|
|
min_8bit_size=4096,
|
|
percentile_clipping=100,
|
|
block_wise=True,
|
|
):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError(
|
|
"Invalid weight_decay value: {}".format(weight_decay)
|
|
)
|
|
if not 0.0 <= eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if initial_accumulator_value != 0.0:
|
|
raise ValueError("Initial accumulator value != 0.0 not supported!")
|
|
if lr_decay != 0.0:
|
|
raise ValueError("Lr Decay != 0.0 not supported!")
|
|
super(Adagrad32bit, self).__init__(
|
|
"adagrad",
|
|
params,
|
|
lr,
|
|
(0.0, 0.0),
|
|
eps,
|
|
weight_decay,
|
|
32,
|
|
args,
|
|
min_8bit_size,
|
|
percentile_clipping,
|
|
block_wise,
|
|
)
|